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Design with regard to collision impact 

Comparison of Response between a Simplified 2DOF system and FE analysis for 

Impact on a Simply Supported Elastic Beam 

Master of Science Thesis in the Master’s Programme Structural Engineering and 

Building Technology 

ERIK ASPLUND 

DANIEL STECKMEST 

Department of Civil and Environmental Engineering 

Division of  

Concrete Structures 

Chalmers University of Technology 

 

ABSTRACT 

During a collision between two objects an impact load is generated. Such events could 

for example happen when a vehicle crashes into a barrier or when an object is thrown 

into a wall by strong wind. The response from such an impact can be very different 

from when a static load is applied. The approach regarding collision impacts 

presented in Eurocode is very limited and simplified, and the subject needs to be 

investigated further. This Master’s thesis uses a simplified two degree of freedom 

(2DOF) system and a finite element (FE) model to analyse the responses during a 

collision between a moving object and a simply supported elastic beam. 

Basic theory of dynamics and collision analysis are presented together with different 

ways of approximating the material behaviour. Several dynamical models, such as 

classic theory, 2DOF spring-mass system and FE analysis are described and 

implemented. A parameter study is performed to decide which properties are most 

critical. This shows that the ratio of the eigenfrequencies of the involved objects is a 

governing factor for how the response of the system behaves. 

The response from a collision depends greatly on the structural properties of the two 

objects involved. Vehicle crash tests are therefore studied in order to determine 

reasonable properties to be used for vehicles in a collision impact analysis. It is 

established that the material response of a vehicle has a bilinear relationship with a 

stiffness increase after a certain deformation, in contrast to Eurocode where a constant 

stiffness value is used which also is very low compared to what is found in the tests. 

To be able to implement a beam in the 2DOF system it needs to be treated as a single 

degree of freedom system. For this purpose, transformation factors are derived to 

translate the beam properties in order to be applicable in the spring-mass system. 

A collision impact can be seen as a point load acting at various distances from the 

support. This needs to be considered in the analysis which is carried out using several 

different points of impact and elastic materials. A comparison of the results from the 

2DOF and FE models is then made to assess how well the simplified system manages 

to describe the response. It can be concluded that the 2DOF system shows a good 

correlation with the FE analysis when the frequency ratio is low or when loading 

close to midspan. When the frequency ratio is high the 2DOF response will be on the 

unsafe side for all loading positions, but the deflection will still correlate well. 

Key words: Collision impact, impulse load, 2DOF, FEM, dynamic response, 

moment, shear force, transformation factors, vehicle stiffness, crash test  
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Dimensionering med hänsyn till kollisionslast 

Jämförelse av respons mellan ett förenklat tvåfrihetsgradssystem och en FE analys för 

kollision med en fritt upplagd elastisk balk 

Examensarbete inom mastersprogrammet Structural Engineering and Building 

Technology 

ERIK ASPLUND 

DANIEL STECKMEST 

Institutionen för bygg- och miljöteknik 

Avdelningen för konstruktionsteknik 

Betongbyggnad 

Chalmers tekniska högskola 

 

SAMMANFATTNING 

Vid en krock mellan två kroppar skapas en kollisionslast. Detta kan vara när ett 

fordon kör in i ett hinder eller när ett objekt slungas in i en vägg av stark vind. 

Responsen från en sådan kollision kan vara mycket annorlunda jämfört med om lasten 

vore statisk. Tillvägagångssättet i Eurokod är ganska förenklat och begränsat, och 

detta ämne måste därför undersökas djupare. Detta examensarbete använder ett 

förenklat tvåfrihetsgradssystem (2DOF-system) och en finita element (FE) modell för 

att analysera responsen vid en kollision mellan ett inkommande föremål och en fritt 

upplagd elastisk balk. 

Grundläggande teori om dynamik och kollisionsanalys presenteras tillsammans med 

olika metoder för att uppskatta materialets beteende. Flertalet dynamiska modeller, 

såsom klassisk stötteori, ett 2DOF-massa-fjäder-system och en FE-modell beskrivs 

och implementeras. En parameterstudie genomförs för att bestämma vilka egenskaper 

som har störst betydelse. Denna visar att kvoten av de ingående kropparnas 

egenfrekvenser är en viktig faktor för att beskriva hur systemet beter sig. 

Den respons som uppstår vid en kollision beror till stor del på de strukturella 

egenskaperna hos de två aktuella kropparna. Därför har krocktester av bilar studerats 

för att kunna uppskatta vilka parametrar som är rimligt att använda vid en 

kollisionsanalys. Det visar sig att fordon har en bilinjär arbetskurva där styvheten ökar 

efter en viss deformation. Detta i motsats till Eurokod som använder ett konstant 

värde på styvheten som dessutom är mycket lägre än vad som visas i testerna. 

För att kunna implementera balken i 2DOF-systemet har transformationsfaktorer 

härletts. Dessa omvandlar balkens egenskaper för att gälla i ett massa-fjäder-system. 

En kollision kan ses som en punktlast som träffar på ett godtyckligt avstånd från 

stödet, vilket tas till hänsyn i beräkningarna genom att flera olika träffpunkter ingår i 

analysen. Resultaten från 2DOF-systemet och FE-modellen jämförs sedan för att 

bedöma hur väl det förenklade systemet beskriver responsen. Det kan konstateras att 

2DOF-systemet visar god överrensstämmelse med FE-analysen när frekvenskvoten är 

låg eller när lasten träffar nära balkmitt. När frekvenskvoten istället är hög visar 

2DOF-systemet resultat på osäker sida för alla träffpunkter, förutom för nedböjningen 

som verkar stämma bra överrens för alla testade fall. 

Nyckelord: Kollisionslast, impulslast, 2DOF-system, FEM, dynamisk respons, 

moment, tvärkraft, transformationsfaktorer, fordonsstyvhet, krocktest. 
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1 Introduction 

1.1 Background 

During a collision between two objects an impact load is generated. Such events could 

for example happen when a vehicle crashes into a barrier, when an object is dropped 

onto a floor or thrown into a wall by strong wind. The response from such an impact 

can be very different from when a static load is applied and the structural properties of 

the objects will be of great importance for the dynamic behaviour. 

The approach regarding collision impact presented in Eurocode is very simplified and 

the knowledge in this field of study is generally limited. Therefore the subject needs 

to be investigated further and alternative methods for analysis, both detailed and 

simplified, needs to be studied. 

 

1.2 Objective 

The objective of this Master’s thesis is to investigate a collision impact and the 

resulting responses using both simplified and more advanced design approaches. The 

different methods, including a two degree of freedom (2DOF) system and a finite 

element (FE) model, will also be compared to see how well the simplified methods 

are able to describe the real behaviour. Furthermore it needs to be studied under what 

conditions it is adequate to use a simplified method and when a more refined method 

needs to be implemented. A literature study treating the basic theory of dynamics will 

also be carried out and a summary of this will be composed and implemented in the 

thesis. 

Furthermore it will be investigated how the response from a collision depends on 

different structural properties of the involved objects. An important design situation in 

real life is vehicle impact, but the knowledge about the structural parameters of such 

an object is limited in the field of structural engineering. Therefore vehicle crash tests 

are to be studied in order to determine reasonable properties to be used for vehicles in 

collision impact analyses. A collision impact can be seen as a point load acting at 

various distances from the support and the importance of impact position for different 

responses, such as moment and shear force, will be examined. 

 

1.3 Scope and limitations 

In this thesis the effect of damping is omitted since it in most cases has a small 

influence on the response of a collision impact, due to the relatively short duration of 

the load. It would also make the analyses more complicated than what is needed. 

Moreover this report only treats simply supported beams with elastic response. This 

choice is made in order to be able to be thorough enough when studying different 

aspects of the subject.  
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1.4 Method 

A literature study covering the basic theory of dynamics and collision analysis, 

including different ways of approximating the material behaviour, is carried out. 

Several dynamical models, such as classic theory, 2DOF spring-mass system and 

FE analysis are then described and implemented. The 2DOF system is modelled in the 

commercial software MATLAB and is based on the fundamental equation of motion. 

The central difference method is then used to find a numerical solution of the 

displacement in each time step. The FE analyses are performed in the commercial 

software ADINA 900 nodes version, ADINA R & D, Inc (2014). Here the colliding 

object is modelled as a point mass connected to a spring and the beam is modelled by 

elastic 3D beam elements. The FE analyses are used as a reference throughout the 

report and are assumed to be a sufficiently good representation of reality. 

The response from a collision depends greatly on the structural properties of the two 

objects involved. A parameter study is therefore performed, using the dynamical 

models, to decide which properties are the most critical. Vehicle crash tests are also 

studied in order to determine reasonable properties to be used for vehicles in collision 

impact analyses. 

To be able to implement a beam in the 2DOF system it needs to be treated as a single 

degree of freedom (SDOF) system. To be able to do this, transformation factors are 

derived in order to translate the beam properties. These can then be implemented in 

the spring-mass system. 

Each analysis is carried out using several different points of impact to simulate an 

arbitrary impact position on the beam. This will also affect the transformation factors 

since the shape and size of the deflection is different for different impact positions. A 

comparison of the results from the 2DOF and FE models is then made to assess how 

well the simplified system manages to describe the response. 

Finally an example of an analysis is carried out where a vehicle crashing into a beam 

is investigated. Here the 2DOF model, with different material responses for the 

vehicle, is implemented and compared to the calculation method described in 

Eurocode. A recommendation for which of the simplified analysis methods to use in 

different situations is also proposed. 

 

1.5 Thesis outline 

Chapter 2 contains most of the background theory used for this thesis including basic 

concepts of dynamics, how to treat different kind of material behaviours and a 

description of dynamic models such as the spring-mass system. 

Chapter 3 implements the dynamic models, previously described in Chapter 2, and 

contains a parameter study to decide which variables are the most important. It also 

examines the effect of a rigid barrier being present. 

Chapter 4 examines what structural parameters are reasonable to use for vehicles that 

crashes into a barrier, and also describes the beam studied in this thesis. A description 

and derivation of how the beam is transformed for use in the 2DOF model is 

presented. Furthermore a description of how impact load is treated in Eurocode is 

included. 
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Chapter 5 contains detailed analyses of impact on a simply supported beam. Both the 

2DOF system and FE model are used for the analysis and the methods are well 

described. The models are also compared to determine how well the simplified 2DOF 

system is able to capture the response in the beam, and to decide when each model is 

proper to use. The effect of the impact position on the beam response is also studied to 

decide the most critical loading position. Finally a calculation example where a 

vehicle crashing into a column is carried out using reasonable parameters previously 

discussed in this thesis. 

Results and the discussion of these are treated individually in each chapter, but a 

concluding discussion of the whole report is carried out in Chapter 6 together with 

recommendations for further studies. References used in this thesis can be found in 

Chapter 7. Several appendices are attached at the end of the report and contain 

additional results that are not included in the main chapters. 
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2 Basic Theory 

2.1 Basic concepts of Dynamics 

To understand the mechanics behind what is happening during a collision between 

two objects, it is necessary to be familiar with some basic dynamical concepts. In a 

collision, the impact load will act during a very short time, in opposite to a static load. 

Therefore some fundamental theory of dynamics is presented in this section, based on 

Johansson and Laine (2012). 

 

2.1.1 Velocity and acceleration 

Mean velocity    is defined as distance moved by an object, Δu, during a certain time 

interval Δt,  

t

u
v




  (2.1) 

If the time step then is considered as infinitely small, i.e. Δt  0, the velocity v is 

defined as the change of an objects position with each instant of time 

u
dt

du
v   (2.2) 

This is basically the same as the speed of an object, except that speed does not 

describe in which direction an object is moving. 

Analogously, the acceleration a is defined as the change of an objects velocity with 

each instant of time t 

u
dt

ud

dt

dv
a 


  (2.3) 

 

2.1.2 Force and pressure 

Force can be described as the ability to accelerate the mass of a body. This relation 

between force F, mass m and acceleration is stated in Newton’s second law of motion 

amF   (2.4) 

To define the force per unit area A the physical quantity pressure P can be used 

A

F
P   (2.5) 
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2.1.3 Momentum and impulse 

The momentum p of a body with mass m and velocity v can be defined as 

vmp   (2.6) 

If the body has an initial velocity of v0 and is subjected to a force F(t) during a certain 

time period t0 ≤ t ≤ t1, it will have a final momentum of 


1

0

)(01

t

t

dttFvmvmp  (2.7) 

The change in momentum can be described as the impulse I transferred to the body 


1

0

)(

t

t

dttFI  (2.8) 

and can be seen as the area under the graph in a force-time diagram, see Figure 2.1. 

When studying impact loads the maximum force is often not the most relevant 

parameter, instead the impulse is of major importance since it relates the acting force 

with the duration of the impact, see Figure 2.1. 

 

Elastisk respons Elastoplastisk respons 

F 

t 
tel 

F2,el 

F 

t 
telpl 

F2,pl 

I0 ≤ I2,elpl ≤ 2I0 I2,el = 2I0 

F 

t 

I0 

F 

t 

F 

t 

F2,1 

F2,2 

t2,1 t2,2 t2,0 → 0 

F2,0 → ∞ 

I0 

I0 

 

Figure 2.1 The impulse I0 is equal to the area under the graph in the force-time 

diagram. Here the impulse is of equal size in all three cases. 

 

2.1.4 Work and kinetic energy 

A force that is acting on a body is said to do work when the action results in a 

displacement of the body. The work Wx done is only dependent on the force Fx that is 

acting in the direction of the displacement u 

uFuFW xx  )cos(  (2.9) 

where φ is the angle between the acting force and the direction of the displacement, 

see Figure 2.2a. 

The work done by a variable force can more generally be written as 
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
u

xx dxxFW
0

)(  (2.10) 

 

 
F 

u 

φ Fx x 

 

 

F 

F 

 

l 

M 
θ 

 

a) b) 

Figure 2.2 a) A force doing work on a body, b) a moment doing work on a body. 

A moment M acting on a body can analogously do work W when a rotation θ is 

generated 

  MW  (2.11) 

where the moment, see Figure 2.2b, is defined as 

lFM   (2.12) 

More generally when the moment varies with the angle , the work can be defined as 




 
0

)( dMW  (2.13) 

The kinetic energy Ek of a body with mass m and velocity v is defined as 

2

2vm
Ek


  (2.14) 

Both work and kinetic energy is quantities of energy and both of them needs to be 

considered in a collision analysis to determine the total response of the objects. 

 

2.1.5 Equation of motion 

The equation of motion describes the behaviour of an object in terms of its motion in 

time and is based on equilibrium of forces and Newton’s second law. The equation of 

motion is used when studying a spring-mass system. The forces acting on a body is 

divided into one external force F(t) and two internal forces, Rsta and Rdyn
,
 as shown in 

Figure 2.3. The internal forces are reactions due to boundary conditions, one static 

and one dynamic, which are dependent on the displacement and velocity respectively, 

this gives 
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amRRtF dynsta  )()(  (2.15) 

The inner restraints can for a linearly elastic response be stated as 

ukRsta   (2.16) 

and 

ucRdyn
  (2.17) 

where k represents the stiffness or spring constant and c the damping coefficient. If 

these two expressions are combined with the equilibrium stated above, we get the 

final expression for the equation of motion 

)(tFukucum    (2.18) 

 

m 

a 

F(t) 
Rdyn 

Rsta 

F(t) 

k 

c 

m 

u 

 

Figure 2.3 Illustration of forces acting on an accelerating body, and how this can 

be modelled as a spring-mass system with damping. 

 

2.2 Structural internal resistance 

2.2.1 Structural response 

The response of a structure can be divided into infinitely many cases, but the 

following three are the most common and generalized cases; elastic, plastic and 

elasto-plastic response, see Figure 2.4. According to equation (2.10) the internal work 

Wi can be seen as the area under graphs in this figure. 

 

u 

R 

Wi 

uel 

k 
Rel 

 
 

u 

R 

Rpl 

Wi 

upl  
 

u 

R 

Wi 

utot uel 

utot = uel + upl 

k 

stiffness k at 

unloading 

Rpl 

 

a) b) c) 

Figure 2.4 Load-displacement curves for different structural responses, a) elastic, 

b) plastic and c) elasto-plastic. 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:80 
8 

These responses are based on a simplification of the real behaviour of different 

structures and materials which gives a good and useful approximation. For the linear 

elastic response, the stiffness, k, is assumed to be constant and the elastic load 

capacity Rel to be infinitely large. However, a specific point of failure, or maximum 

load capacity, could also be specified. The deformation uel is fully elastic and will 

return to zero after unloading. For the plastic response, the stiffness is not a relevant 

parameter and the plastic load capacity Rpl is the only parameter influencing the 

response. The deformation upl is fully plastic and will be permanent even after 

unloading. The final response, elasto-plastic response, is a combination of the former 

two; it has an elastic behaviour up to its load capacity and a plastic behaviour 

afterwards. The total displacement utot consists of both an elastic uel and a plastic upl 

part. The elasto-plastic response is the one closest to reality for most structures and is 

therefore recommended for analyses. But, for simplicity, if the plastic deformation 

capacity of a structure is small, it can be wise to use the elastic model and if the 

stiffness of the structure is high, the plastic response can be used instead. 

The stress-strain curves in Figure 2.5 are illustrations of the real material behaviour of 

concrete and steel. The response for concrete, Figure 2.5a, is often simplified to an 

elastic behaviour with a maximum capacity of fcc in compression. For a reinforced 

concrete beam the strength of concrete in tension is, due to cracking, often neglected 

in analysis. Instead the reinforcement determines the governing strength capacity in 

tension. In the curve describing the reinforcement, Figure 2.5b, both an elastic and a 

plastic part can be distinguished. The elastic part shows substantially a linear elastic 

behaviour but the plastic part exhibits some strain hardening. This can be disregarded 

and the curve can conservatively be estimated with a simplified elasto-plastic 

behaviour, similar to the structural response seen in Figure 2.4c.  

 σc 

εc 

fct 

fcc 

compression 

tension 

a) 

σs 

εs 

fy 

tension 

fu 

εsu b)  

Figure 2.5 Stress-strain relationship for a) concrete and b) reinforcement in 

tension. 

The impulse created during a collision impact can be of various different shapes 

depending on the structural properties of the colliding bodies, such as mass, stiffness 

and loading capacity. For a simplified case where a body crashes into a non-

deformable barrier, three different types of impulses are illustrated in Figure 2.6, 

where the force F acting on the barrier is plotted against time t, Johansson and Laine 

(2012). However in reality both bodies will become deformed during the impact and 

the resulting impulse will get a more complex form, this is discussed further in 

Chapter 3. 
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F, R 
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Wi Wy 

R 

uel,1 

utot = uel,1 + upl 

Fk 
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F 

t 
tel 

F2,el 

F 

t 
tpl 

F2,pl 

F 

t 
telpl 

F2,pl 
I2,pl = I0 I0 ≤ I2,elpl ≤ 2I0 I2,el = 2I0 

a) b) c)  

Figure 2.6 Different shape of impulse for three different responses in a body 

during a collision into a rigid barrier; a) elastic response, b) plastic 

response and c) elasto-plastic response. 

In Figure 2.6 the different size of the impulse of reaction force I2 is visualized for the 

three responses. F2,el and F2,pl are the maximum resulting load acting on the barrier in 

the elastic respectively in the plastic case. As seen here, the impulse is twice as large 

for the elastic response I2,el, compared to the impulse for the plastic response I2,pl. The 

reason for this behaviour is that the momentum of the body, during the impact, will 

change from p0 to zero for the plastic case, while it will change from p0 to –p0 for the 

elastic case. This can be thought of as two impulses, if the total impulse in Figure 2.6a 

is divided at the time of maximum force, into two equally big parts. Then the first 

impulse is acting when the body has a positive velocity, and the second impulse is 

acting during the bounce back period, when the velocity is negative. For the elasto-

plastic response, the impulse will be somewhere between the impulses of the other 

two responses. 

The ability of a structure to absorb energy is vital for its performance under impulse 

loading. An external work is done from the impact load F and can be set equal to the 

kinetic energy of a projectile. An internal work, based on the internal resistance R and 

deformation capacity, is then created to balance up the external work, see Figure 2.7. 

The external and internal work, We and Wi, can be seen as the integrals of the force-

deformation curve. The barrier is here seen as a body which can be deformed. 

 
t 

F 

I F 

F2,el 

F F 

I2,pl = I0 I0 ≤ I2,elpl ≤ 2I0 I2,el = 2I0 
 

 

m a 

F(t) 

R(t) 

m u 

F(u) 

R(u)  
 

u 

F, R 

utot 

F(u) 

R(u) 

We 

Wi  

 

Figure 2.7 Illustration of how internal work is created from an impulse load to 

balance the external work. 
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Here F is the force from the incoming object acting on the barrier, and R is the 

reaction force acting in the barrier. The incoming object is here assumed to have an 

elastic response and the barrier is assumed to have a nonlinear plastic response. 

This internal work can be achieved in different ways depending on the structural 

properties. A structure with high stiffness will get small deformations but large 

reaction forces, while a low stiffness will give large deformations but small reaction 

forces. In opposite to what is preferable for a structure subjected to static loading, it is 

therefore often better for a structure to have a low stiffness and large deformation 

capacity when subjected to impulse loading. The latter case will in general give higher 

energy absorption capacity by using the material in a more efficient way, see Figure 

2.8. 

 

R 

u 
u1 u2 

R1 

Wi,1 

R2 

Wi,2 

Wi,2 > Wi,1 

 

Figure 2.8 Internal work done in two different materials, one with high strength 

and low deformation capacity and one with low strength and high 

deformation capacity. 

 

2.2.2 Plastic rotation capacity 

When a plastic or elasto-plastic response is used for a beam it means that the concept 

of moment redistribution is utilized and that the maximum deflection is the governing 

factor for the design of the beam. This deflection can be translated, using 

trigonometry, into a maximum rotation, or plastic rotation θs, at the points where the 

plastic hinges are formed, see Figure 2.9. The method for determining the plastic 

rotation capacity described in this section is based on Eurocode 2 (CEN, 2004) and is 

only valid for the ultimate limit state (ULS). In design, the plastic rotation should not 

exceed the rotation capacity, θs ≤ θpl. 

 

0.6 h 0.6 h 

h θ 

 

Figure 2.9 Plastic rotation θs of a reinforced concrete section in a continuous 

beam, CEN (2004). 
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The plastic analysis in Eurocode can be used, without further check of rotation 

capacity, if the following three conditions are fulfilled, CEN (2004) 

I. the area of the tensile reinforcement is limited as 

a. xu / d < 0.25 for concrete strength class ≤ C50/60 

b. xu / d < 0.15 if concrete class ≥ C55/67 

II. reinforcement used is of either class B or C, see Table 2.1 

III. the ratio between intermediate support moment Ms and field moment Mf 

should fulfil 0.5 ≤ Ms / Mf ≤ 2.0 

where xu is the depth of the compression zone in the ultimate limit state, ULS, and d is 

the effective depth of the cross-section. 

These conditions for use of the plastic design are presumably based on a static loading 

point of view and are therefore not valid for an impulse load. For this kind of load the 

plastic rotations can be considerably larger, and more detailed checks of the rotation 

capacity are therefore needed in collision analysis; this is further described below. 

Table 2.1 Definition of reinforcing steel classes according to Eurocode 2 

CEN (2004). 

Class fyk [MPa] ftk / fyk [-] εuk [%] 

A 400 - 600 ≥ 1.05 ≥ 2.5 

B 400 - 600 ≥ 1.08 ≥ 5.0 

C 400 - 600 ≥ 1.15 & < 1.35 ≥ 7.5 

The reinforcement classes specified in Eurocode 2 are of the new European standard 

which replaced the old Swedish system about 20 years ago. When analysing older 

structures it can therefore be difficult to translate the old types of reinforcement to 

today’s standards. The old types were in general more ductile and some of them even 

more ductile than today’s class C, meaning they allowed a greater plastic rotation, 

Johansson and Laine (2012). This is important to keep in mind when dealing with 

older structures. 

The plastic rotation capacity θpl for a beam with specified reinforcement and concrete 

class is given as a diagram in Figure 2.10. Here is only reinforcement class B and C 

represented, since class A is not recommended to be used in plastic analysis. The 

diagram is clearly visualising how the reinforcement will fail first if the amount of 

reinforcement is small and how the concrete will fail first if the beam is well 

reinforced. For an optimal plastic behaviour it is necessary to have a reinforcement 

amount near the boundary between these two failure mechanisms. 
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crushing of  

concrete 

reinforcement 

failure 

 

Figure 2.10 Plastic rotation capacity θpl for different reinforcement and concrete 

classes. Limit between reinforcement and concrete failure for one type 

of concrete with class C reinforcement is visualised. The values apply 

only for a shear slenderness λ of 3, CEN (2004). 

For the plastic hinges to be formed in the considered regions, the following conditions 

regarding the area of the tensile reinforcement needs to be met 

I. xu / d < 0.45 for concrete strength class ≤ C50/60 

II. xu / d < 0.35 if concrete class ≥ C55/67 

The values for the plastic rotation capacity given in Figure 2.10 needs to be multiplied 

with a correction factor kλ for beam cross sections with a shear slenderness, λ, other 

than 3 

pldpl k   ,
 (2.19) 

and 

3


 k  (2.20) 

The shear slenderness is defined as  

d

l0  (2.21) 

where l0 is the distance between the zero moment section and maximum moment 

section after redistribution and d is the effective depth. The shear slenderness can in a 

simplified way be calculated as 

dV

M

sd

sd


  (2.22) 
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where Msd and Vsd are the design bending moment and the corresponding design shear 

force. 

Eurocode 2 is the only standard treated in this section but not the only design code 

which gives recommendations for how to calculate the plastic rotation capacity. 

Bk 25:2 (Fortifikationsförvaltningen, 1973) and Betonghandboken (Cederwall, et al., 

1990) are two other handbooks, though a little bit older, that treats the same subject. 

In Johansson and Laine (2012) a comparison is made between the methods presented 

in these three standards. The result shows that Eurocode produces reasonable values 

for the rotation capacity that lies somewhere in between the values from the other two 

methods. 

 

2.3 Dynamic models 

2.3.1 Classic impact theory 

A simple way to study a one-dimensional collision between two bodies is to use the 

classic impact theory. It is based on the assumptions that the first body has an initial 

velocity of v0 and a mass of m1 and the second body has no initial velocity and 

mass m2. After the impact the velocities are assumed to be v1 and v2 respectively as 

shown in Figure 2.11. 

 

m1 m2 

v0 

Before impact 

m1 m2 

v2 

After impact 

v = 0 

v1 

 

Figure 2.11 Illustration of a body with a certain velocity colliding with another 

body without any velocity. After the collision both bodies will have a 

new velocity. 

The kinetic energy and momentum before the impact are 

2

2

01
0,

vm
Ek


  (2.23) 

010 vmp   (2.24) 

The classic impact theory can describe both an elastic and a plastic collision by 

changing the coefficient of restitution (COR) e, between 0 (plastic impact) and 1 

(elastic impact). If the COR is 0 < e < 1 it means that the impact is somewhere in 

between elastic and plastic, the COR is defined by 

0

12

v

vv
e


  (2.25) 

The final velocities of the two bodies after the impact are consequently  
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  (2.26) 
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v 




  (2.27) 

For an elastic collision both the kinetic energy and momentum are preserved in the 

impact. This gives a COR of e = 1 and the final velocities become 

0

21

21
,1 v

mm

mm
v el 




  (2.28) 

0

21

1
,2

2
v

mm

m
v el 




  (2.29) 

From these equations it can be noted that v1,el is negative if m1 < m2, meaning that 

body 1 will be moving in the opposite direction after the impact. Body 2 on the other 

hand will always be moving in the positive direction; i.e. the initial direction of 

movement of body 1. If m1 = m2 body 1 will be stationary after the impact and all 

energy will be transferred to body 2. 

For a plastic collision only the momentum is preserved and e = 0. The kinetic energy 

is here reduced because of the transformation to potential energy during the duration 

of the plastic impact. The final velocity of the two bodies will be equal, thus they 

move together after the impact 

0

21

1
,2,1 v

mm

m
v pl 


  (2.30) 

From this equation it can be seen that v1,2,pl will be half the size of v0 when m1 = m2 

and that v1,2,pl  0 when m1 << m2, meaning all kinetic energy will be transformed 

and absorbed in body 1. 

It is also possible to describe an elasto-plastic behaviour for a case when 0 < e < 1, 

which means that the response lies somewhere between the elastic and plastic case. 

The difficulty with this case is how to decide on what value of the COR to use. 

The kinetic energy after the impact can be stated as a function of the initial kinetic 

energy. For an elastic collision 

0,

2
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21

2

0
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2

,11

,1,
22

k

el

elk E
mm

mm
v

mm

mmmvm
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


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
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




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










  (2.31) 

  0,2
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2

0
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2

,22
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elk E
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
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




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










  (2.32) 

and for a plastic collision the total kinetic energy is  
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The amount of kinetic energy acting in the positive direction of the system, regardless 

the value of e, can be described as 








2,1,

2,

3,

kk

k

k
EE

E
E  for 

0

0

1

1





v

v
 (2.34) 

With the help of this equation a ratio between the initial and final kinetic energy 

acting in the positive direction can be calculated, Ek,3 / Ek,0, as a function of the ratio 

of the bodies masses m1 / m2. The relationship is here presented for different values of 

the COR in a graph, see Figure 2.12. 

 

Figure 2.12 Ratio of kinetic energy, acting in the positive direction, as a function of 

the mass ratio, for different values of the coefficient of restitution, e. 

If m1 < m2, which is usually true for the type of collision that will be studied in this 

report, the difference in response for an elastic and plastic collision can be expressed 

as a ratio of the final kinetic energies acting in the positive direction 
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(2.35) 

From this ratio it is clear that the kinetic energy for the elastic case is larger, which 

makes sense since, as stated before, all kinetic energy is preserved. When m1 / m2  0 

the kinetic energy is four times larger for the elastic case and when m1 / m2  1 it is 

two times larger. 
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This relation can also be seen in Figure 2.12, and it is clear that the difference is not 

evened out until m1 / m2 > 100. From this, one can understand the importance of 

choosing a correct value for the COR. 

 

2.3.2 Single degree of freedom 

Perhaps the simplest dynamical model is a spring-mass oscillator shown in 

Figure 2.13. 
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Figure 2.13 Single degree of freedom spring mass oscillator. 

Since only one variable, u, is needed to describe the instantaneous position of the 

mass, this is called a single degree of freedom (SDOF) system. The equation of 

motion for this system can be written as 

)(tFkuucum    (2.36) 

The effect of the damping c is considered negligible for applications dealt with in this 

report due to the short time period of the load application and that only the maximum 

displacement u is of interest. If the system undergoes free vibration, meaning F(t) = 0, 

the homogeneous second-order differential equation becomes 

0 kuum   (2.37) 

The general solution of equation (2.37) is 

tAtAtu nn  sincos)( 21   (2.38) 

where A1 and A2 are constants that are chosen so that the initial conditions will be 

satisfied. In this case, the initial conditions for displacement and velocity are 

0)0( uu   (2.39) 

00)0( vuv    (2.40) 

Also ωn is the undamped natural circular frequency, defined by 
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 
s

rad
m

k
n   (2.41) 

So by applying the initial conditions to equation (2.38), the time-dependent 

displacement for free vibration of an undamped mass-spring oscillator is 

  t
v

tutu n

n

n 


 sincos 0

0   (2.42) 

Equation (2.42) only applies for free vibration, and equation (2.43) is a more general 

solution that is used to determine the complementary solution when the external force 

F(t) ≠ 0 

k

tF
tAtAtu nn

)(
sincos)( 21    (2.43) 

A very important special case is the response of an undamped SDOF system to a short 

duration impulse. If we consider a force with a duration, td, much smaller than the 

period time, T, of the SDOF system, that is td << Tn, the impulse is defined as 

 
dt

dttFI
0

 (2.44) 

If the system is at rest for t ≤ 0, the equation of motion and initial conditions are 



 


0

0

0

)( dtttF
kuum 

 

    000  uu   

(2.45) 

By integrating equation (2.45) with respect to time and applying the initial conditions 

we get 

  Itkutum davgd   (2.46) 

where uavg is the average displacement in the time interval 0 < t < td. By letting 

td  0, mening that impulse corresponds to the characteristic impulse, the second 

term in equation (2.46) can be ignored, which gives 

  Ium 0
 (2.47) 

Thus the impulse gives the mass an initial velocity of 

 
m

I
u 0  (2.48) 

but leaves the initial displacement to 
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  00 u  (2.49) 

These expressions can be used as “initial” conditions for the free vibration problem. 

By using these conditions in equation (2.42) we get the impulse response 

  t
m

I
tu n

n




sin  (2.50) 

The unit impulse response function is obtained by letting I = 1, and is by convention 

often called h(t) 

  t
m

th n

n




sin
1

  (2.51) 

 

 SDOF loaded with characteristic impulse Ic 2.3.2.1

In Figure 2.14 a characteristic impulse for an ideal impulse load, a time dependent 

load with infinitely high pressure acting during an infinitely short time, is shown. 

 

Ic 

F 

t 
ta 

 

Figure 2.14 Illustration of the characteristic impulse Ic. 

The action of an impulse, Ic, acting on a body with mass m can be expressed as 

vmI c   (2.52) 

The kinetic energy, Ek, for the same body with velocity v is 

2

2vm
Ek


  (2.53) 

which means that by combining equations (2.52) and (2.53) the kinetic energy 

generated by an impulse acting on a body with mass m can be expressed as 
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m

I
Ek

2

2

  (2.54) 

The kinetic energy, Ek, transferred into an impulse loaded structure can be seen as 

exterior work, We. This needs to be in equilibrium with the interior work, Wi, of the 

body in order to counteract the initiated movement coming from the impulse. This 

means an energy balance is obtained 

ie WW   (2.55) 

which is the basis used in the calculation model for an impulse loaded structure. The 

interior work can act in different ways depending on its type of response. Here an 

elastic, a plastic and an elasto-plastic structural response will be further examined. 

 

 Elastic system 2.3.2.2

For an elastic system, see Figure 2.15, the interior reaction force, R(u), is expressed as 

  ukuR   (2.56) 

where k is a constant stiffness and u is the displacement. Based on this the interior 

work can be calculated as 

 
22

2

elelel
i

kuuuR
W 


  (2.57) 

where uel is the elastic displacement needed to absorb the external work according to 

Figure 2.15c. By combining equations (2.54) and (2.57) the needed elastic 

deformation can be expressed as 

n

c
el

m

I
u


  (2.58) 
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a) b) c) 

Figure 2.15 System with linear elastic response: (a) SDOF-system, (b) load-

deflection relationship, (c) energy equilibrium between external and 

internal work. 
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 Plastic system 2.3.2.3

When considering a plastic system, see Figure 2.16, the internal reaction force is set to 

a constant capacity, R. The internal work can then be expressed as 

 
plplpli RuuuRW   (2.59) 

where upl is the plastic displacement needed to absorb the external work according to 

Figure 2.16c. By combining equations (2.54) and (2.59) the needed elastic 

deformation can be expressed as 

mR

I
u c

pl
2

2

  (2.60) 
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a) b) c) 

Figure 2.16 System with plastic response: (a) SDOF-system, (b) load-deflection 

relationship, (c) energy equilibrium between external and internal 

work. 

 Elasto-plastic system 2.3.2.4

For an elasto-plastic system, see Figure 2.17, the internal reaction force R(u) is 

expressed as 

 









1,

1

    ,

  ,

el

el,

uuR

uuku
uR  (2.61) 

where uel,1 is the limit for elastic response, which is 

k

R
uel 1,  (2.62) 

The internal work can on the basis of this be expressed as 

 1,1, 2
2

pleli uu
R

W   (2.63) 
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and by combining equation (2.63) with equations (2.54) and (2.55) the required plastic 

deformation can be calculated as 

222

1,1,

2

1,

el

pl

elk
pl

u
u

u

mR

I
u   (2.64) 

where upl is the plastic response for a pure plastic system. The total deformation can 

then be calculated to 

2

1,

1,1,

el

plpleltot

u
uuuu   (2.65) 
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a) b) c) 

Figure 2.17 System with elastic-plastic response: (a) SDOF-system, (b) load-

deflection relationship, (c) energy equilibrium between external and 

internal work. 
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2.3.3 Multi-degree of freedom 

 

u1 u2 

k1 k2 

c1 c2 

F1(t) F2(t) 
m1 

m2 

 

Figure 2.18 Two-degree of freedom system (2DOF) consisting of two masses, 

springs and dampers respectively. 

In Figure 2.18 we see a two-degree of freedom system (2DOF) consisting of two 

masses. In order to derive the equation of motion for this system Newton’s Second 

Law is applied. Firstly free-body diagrams are drawn for each of the masses with the 

unknown internal forces labelled, see Figure 2.19. 

 

Rdyn1 

F1(t) F2(t) 
m1 

m2 
Rdyn1 Rdyn2 

Rsta1 Rsta1 Rsta2 

 

Figure 2.19 Free-body diagrams showing all forces, both internal and external, 

acting on the two masses. 

Force equilibrium for the two masses gives 

111111 )(: dynsta RRtFumF    (2.66) 

22112222 )(: dynstadynsta RRRRtFumF     (2.67) 

The spring forces, Rsta1 and Rsta2, are related to the displacements and the viscous 

damping forces, Rdyn1 and Rdyn2, are related to the velocities 

 2111 uukRsta   (2.68) 

 2111 uucRdyn
   (2.69) 

222 ukRsta   (2.70) 

222 ucRdyn
  (2.71) 

By combining and simplifying the above expressions the following is obtained 

    )(121121111 tFuukuucum    (2.72) 

    )(2212112121122 tFkkuukccuucum    (2.73) 
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Equations (2.72) and (2.73) can be written on matrix form 
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 (2.74) 

or with symbolic matrix notation 

 tFKuuCuM    (2.75) 

where M is the mass matrix, C is the viscous damping matrix, K is the stiffness 

matrix, u is the displacement vector and F(t) is the load vector, 

Craig Jr. and Kurdila (2006). When comparing equation (2.75) to the equation of 

motion for a SDOF system (2.18), it can be seen that they have the same arrangement. 

In order to calculate the natural frequencies and mode shapes of the system the 

damping is set to zero. To keep it more general the equation of motion is from now on 

written on a more general form 
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 (2.76) 

where k11 = k1, k12 = k21 = -k1 and k22 = k1-k2. In the same way as for a SDOF-system 

the solution will consist of one complementary solution, obtained by setting the force 

vector to zero, plus a particular solution. 

     tututu cp   (2.77) 

The complementary solution determines the natural frequencies and natural modes of 

the system which is very important for further analyses. The equation of motion now 

has the form 
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 (2.78) 

The system is assumed to undergo harmonic motion of the form 

     tUtu cos11

 
     tUtu cos22  

(2.79) 

where U1 and U2 are signed constants that are used in order to determine the 

amplitudes of the two sinusoidal motions. This is then substituted into equation (2.78) 

in order to obtain the algebraic eigenvalue problem 
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The only non-trivial solution to this set of homogeneous linear algebraic equations 

correspond to values of ω
2
 that satisfy the characteristic equation 


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Equation (2.81) is solved for the two roots labelled ω1
2
 and ω2

2
, these are the 

eigenvalues and ω1 ≤ ω2. The parameters ω1 and ω2 are the circular natural 

frequencies of the system expressed in rad/s. In order to calculate the natural modes, 

or the eigenvectors, ω1
2
 is substituted back into the first row of equation (2.80) in 

order to obtain the mode shape ratio 

 11

2
1 
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






U

U
  (2.82) 

In the same way ω2
2
 is substituted into the second row to obtain 
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The mode shapes is characterized by the following notation 
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where Ar is a constant. The general solution of equation (2.76) is then with natural 

frequencies and mode shape ratios inserted 

     
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tAtAtu

tAtAtu
 (2.85) 

where the constants A1, A2, α1 and α2 are determined by initial conditions, 

Craig Jr. and Kurdila (2006). Usually the initial conditions are u1(0), u2(0), u 1(0) and 

u 2(0). In this solution the damping is neglected, since it has little effect on the 

maximum response during a short term impact. An alternate way to write the general 

solution is 

         

         tBtAtBtAtu

tBtAtBtAtu

2222221111112

222211111
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


 (2.86) 

Where the constants A1, A2, B1 and B2 are determined by initial conditions. It is also 

possible to write equation (2.86) on vector form using the notation in equation (2.84), 

it then becomes 

         tBtAtBtAt 222222111111 sincossincos  u  (2.87) 
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2.3.4 The Central Difference Method 

The Central Difference Method is an explicit solution method for the numerical 

solution of second-order differential equations in structural dynamics applications. 

Recall the equation of motion, here written on matrix form  

)(tFuKuCuM    (2.88) 

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, F(t) is 

exterior load vector and  ,    and u is acceleration-, velocity- and displacement-

vectors respectively. It is a conditionally stable method where each time-step, ∆t, must 

be less than a critical time-step ∆tcrit, otherwise there will be an error that grows to 

such proportions that the obtained solution quickly becomes worthless. The critical 

time step can be expressed as 

1

max

2
2  MK


critt  (2.89) 

where ωmax is the highest eigenfrequency of the system. It should be noted that in 

particular for SDOF-systems, a substantially smaller time-step might still be necessary 

in order to obtain an accurate solution. Which time-step to use in different situations 

depends on a combination of the load configuration and the response time of the 

system, but usually a time-step in the magnitude of one hundredth of the duration of 

the load works well, Johansson and Laine (2012). 

The basis of the Central Difference Method is the simple finite-difference expressions 

for velocity and acceleration 
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When the finite-difference expressions for the first and second derivatives are 

substituted into the governing equation of motion evaluated at time t, the discrete 

governing equation results in 
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 (2.92) 

Ultimately the deflection at time t+∆t can be written as 
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As seen all terms on the right hand side in equation (2.93) is from the time t or t − Δt, 

which means that the deflection ut+Δt can be solved using already known information. 

Also a reasonable approximation, which is on the safe side for an impulse loaded 

structure, is to put the damping to zero, C = 0. This is due to the fact that an impulse 

load is normally acting during a very short time, meaning that the effect of the 
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damping on the maximum deflection is negligible, Johansson and Laine (2012). This 

simplifies equation (2.93) to 
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From equation (2.94) it can be seen that the Central Difference Method needs a 

special starting step since in the first step when calculating the displacement uΔt 

information about the deflection at time −Δt is needed. For this reason a special 

starting step is used, expressed as  

0

2

00
2

uuuu  




t
tt  (2.95) 

in order to start the numerical analysis. 

The Central Difference Method is summarized as an algorithm in Appendix A. 

There is several other related methods to solve this type of problem, for example the 

Newmark-β Method and the Wilson-θ Method. These methods are not discussed 

further in this thesis; instead readers are referred to Craig Jr. and Kurdila (2006). 

 

Earlier in this section the stiffness, K, is assumed to show a linear elastic behaviour. 

However, it is relatively easy to use the same expressions but with a non-linear 

material response. Since the stiffness, K, is given for time t when calculating the 

displacement at time t+∆t, it is possible to use a secant stiffness in order to describe a 

non-linear response, see Figure 2.20. That is, by letting the stiffness at time t be a 

function of the present deflection, u(t), meaning, kt = kt(ut), it is possible to compute 

the stiffness for an arbitrary material response. In equation (2.94) it is not really of 

interest to describe the stiffness per se, but the internal force, Rt, acting in the current 

time-step  

ttt ukR   (2.96) 

The secant stiffness is therefore expressed as 

t

t

t
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R
k   (2.97) 
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a) b) 

Figure 2.20 Secant stiffness at time t for a system with arbitrary material properties. 

In the same way it is possible to adapt the stiffness during off-loading. By keeping 

track of if the current stiffness should correspond to loading or off-loading it is 

possible to adapt the stiffness to the present case. For example, it is possible that for a 

plastic response allow the off- and on-loading correspond to a desired linear-elastic 

stiffness up to a certain yield-stress, and for further loading, with growing plastic 

deformations, let the secant stiffness take over. 
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3 Analysis of Collision Models and Parameter Study 

In this chapter collisions will be simulated and their responses studied. For this 

purpose an algorithm for a 2DOF spring-mass system was created using the 

commercial software MATLAB, see Appendix H, where the central difference 

method is used to find a numerical solution of the displacement in each time step. 

 

3.1 2DOF system without barrier 

In this section the response of a system during a collision will be studied. With the 

starting point in the classic impact theory the 2DOF system, with the stiffness of 

body 2 k2 set to zero, can be utilized for the analysis, see Figure 3.1. 

 

Classic theory 2DOF system 

m1 m2 

v0 
v = 0 

v0 

m1 m2 

k1 

v = 0 

 

Figure 3.1 Illustration of how the classic theory can be analysed using a 2DOF 

spring-mass system. 

The response of an impact according to the classic theory is presented in Figure 2.12. 

Based on this four points were chosen, to be studied further in this section. These 

correspond to elastic and plastic response, e = 1 and e = 0, when the mass ratio is 

equal to 0.1 and when it is equal to 10, see Figure 3.2. 
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Figure 3.2 Points of interest in the classic impact theory to be studied further, 

based on Figure 2.12. 
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3.1.1 Elastic response 

The collision with elastic response is first studied. The spring will have a linear elastic 

behaviour when the deformation is positive and a stiffness of zero when the 

deformation is negative. This is due to the fact that the two bodies should only interact 

through compression forces, not tension forces, see Figure 3.3. 

 

R1 

k1 

∆u = u1 – u2 

 

Figure 3.3 The force-displacement relationship used for the spring when studying 

a classic impact with elastic response. 

The parameters for the analyses are chosen to correspond to the points marked in 

Figure 3.2 by letting the mass of the second body m2 be constant and varying the mass 

of the first body m1 in order to obtain the correct mass ratio. For the collisions with a 

mass ratio of ten, two different stiffnesses are also considered, see Table 3.1. 

Table 3.1 Input parameters for the elastic classic collision analyses. 

Case 
m1 

[kg] 

m2 

[kg] 

k1 

[kN/m] 

v0 

[m/s] 

Collision 1 1 000 10 000 100 20 

Collision 2 100 000 10 000 100 20 

Collision 3 100 000 10 000 1 000 20 

The results from the analyses are compared in a force-time diagram where the force in 

the spring during the impact period is shown in Figure 3.4. This and all other analyses 

in this section are studied during a time period of 1.0 second, and with an initial 

velocity v0 of 20 m/s (72 km/h). 
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Figure 3.4 Force vs time during an impact in an elastic classic collision, for 

parameters in the different cases see Table 3.1. 

In Figure 3.4 for Collision 2 the duration of the impact is roughly 0.95 seconds, while 

it is only about 0.3 seconds for Collision 1. This is due to that a larger impulse needs 

to be transferred to the second body when the momentum of the first body is larger. 

For Collision 3 the stiffness is ten times larger, but the mass ratio is the same as for 

Collision 2. Here the impulse, the area under the force-time graph, is equally large as 

for Collision 2 because of the same momentum. But the duration of the impact is now 

the same as for Collision 1 because of the higher stiffness, and the maximum force 

therefore needs to be higher. 

In Figure 3.5 various other results from the analysis of Collision 1 are presented, 

namely the displacement u, the velocity v, the impulse I and the work W, for both 

bodies and as a function of time. Figure 3.5a shows the displacement over time for the 

two bodies. During the impact body 1 is deformed initially before body 2 is set in 

motion. After about 0.15 seconds body 1 is stationary, velocity equal to zero, before it 

changes direction and the deformation decreases again. After about 0.3 seconds the 

impact is over and the two bodies are no longer in contact with each other, this can 

also be seen in Figure 3.5b. As discussed in Section 2.3.1, the first body will obtain a 

negative velocity after impact if it has smaller mass compared to the second body, and 

this is confirmed in this analysis, see Figure 3.5b. Figure 3.5c clearly shows how the 

impulse, or momentum, is transferred from the first body to the second body, as the 

two curves are exactly mirrored. Finally Figure 3.5d shows how the internal work 

develops in body 1 and how an external work is transferred to body 2. The work done 

in body 1 increases in the beginning of the impact, but decreases after the object 

changes direction, due to that a negative work is done. The work done on body 2 

increases slowly and ends up at the same level as the work done in object 1. The 

results for collision 1 are compared with the classic impact theory in Table 3.2. As 

seen they are almost identical and gives the same energy ratio Ek3 / Ek0 as in  

Figure 3.2 

For the corresponding results for Collision 2 and Collision 3, see Appendix B. 
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Table 3.2 Comparison of results between classic impact theory and the 2DOF 

system for elastic response, collision 1. 

 Classic 2DOF 

e [-] 1 1.000 

v1 [m/s] -16.364 -16.364 

v2 [m/s] 3.636 3.636 

Ek0 [kJ] 200 200 

Ek3  [kJ] 66.120 66.117 

Ek3/Ek0 0.331 0.331 

 

  

a) b) 

  

c) d) 

Figure 3.5 Results from an elastic collision, Collision 1, where m1 = 1 000 kg, 

m2 = 10 000 kg, k1 = 100 kN/m and v0 = 20 m/s. 
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3.1.2 Plastic response 

The collision with plastic response is now studied. The spring will have a plastic 

behaviour when the deformation is positive, and as before, a stiffness of zero when 

the deformation is negative, see Figure 3.6. 

 

R1 

R1 

k1 

∆u = u1 – u2 

 

Figure 3.6 The force-displacement relationship used for the spring when studying 

a classic impact with plastic response. 

The parameters for the analyses are chosen to correspond to the points in Figure 3.2, 

this time the points on the curve for plastic response where e = 0. This is 

accomplished by again letting the mass of the second body m2 be constant while 

varying the mass of the first body m1. For the higher mass ratio two different load 

capacities are considered in the analysis. To be able to simulate an entirely plastic 

behaviour, the stiffness of the spring is given a sufficiently high value, see Table 3.3. 

The COR e is subsequently calculated for the three analyses according to 

equation (2.25), to ensure that it is close to zero. 

Table 3.3 Input parameters for the plastic classic collision analyses. 

Case 
m1 

[kg] 

m2 

[kg] 

k1 

[MN/m] 

R1 

[kN] 

v0 

[m/s] 
e 

Collision 4 1 000 10 000 100 200 20 0.033 

Collision 5 100 000 10 000 100 200 20 0.011 

Collision 6 100 000 10 000 100 400 20 0.021 

The results from the analyses are compared in a force-time diagram where the force in 

the spring during the impact period is visualized in Figure 3.7. 
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Figure 3.7 Force vs time during an impact in a plastic classic collision, for 

parameters in the different cases see Table 3.3. 

The shape of the impulse for all three cases in Figure 3.7 is almost a perfect rectangle, 

which is characteristic for a plastic response. The fact that the stiffness is not infinitely 

large is the reason for the small inclinations of the loading and unloading curves. The 

plastic response gives a constant force applied to the second body during most of the 

impact period. This leads to that the duration of impact for Collision 5 is much longer, 

about 0.93 seconds, compared to Collision 4 which has a duration of about 

0.1 seconds. This is due to the larger impulse that needs to be transferred in 

Collision 5, where the mass m1 is larger. When the load capacity, or yield force, is 

doubled in Collision 6 the impact duration is half as long, roughly 0.47 seconds, 

compared to Collision 5. This means that the transferred impulse is equal in the two 

collisions, which should also be the case because of the same momentum the bodies 

have prior to the collision. 

In Figure 3.8 several other results from the analysis of Collision 4 are presented, 

namely the displacement u, the velocity v, the impulse I and the work W, for both 

bodies and as a function of time. In Figure 3.8a the displacement over time is 

visualized, and it can be seen how the plastic deformation of the first body takes place 

entirely during the first 0.1 seconds of the impact. After this time, the impact is over 

and the two bodies are not in contact any more. This is however not correct since in a 

fully plastic impact the bodies will stay in contact with each other. What is seen here 

is because of the elastic behaviour at loading and unloading that are used in the 

calculations. That the plasticization process is finished is confirmed in Figure 3.8b 

where it is seen that the velocities will be constant after this period, with body 2 

having the highest velocity. Figure 3.8c shows how the impulse is transferred between 

the bodies, and it is exactly mirrored as it was for the elastic collisions. Figure 3.8d 

shows a different behaviour of body 1 compared to the elastic analysis. Here the work 

done in body 1 is larger than in body 2 due to the fact that plastic deformation takes 

place in the former. The work done on body 2 is on the other hand a lot smaller. This 

is interpreted as that the impact energy is mostly consumed in the plasticization 

process of body 1, instead of acting on body 2. Another observation is that for a 

plastic analysis the first body will never bounce back and get a negative velocity, in 

opposite to what happens in the elastic analysis when m1 < m2. The results for 

collision 4 are compared with the classic impact theory in Table 3.4. There is a small 

difference in the results, but the energy ratio Ek3 / Ek0 is still very close to each other 
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and has the same value as given in Figure 3.2. For a better correlation with the classic 

theory a higher stiffness could be used, i.e. a lower value of the COR would be 

obtained. 

For the corresponding results for Collision 5 and Collision 6, see Appendix B. 

Table 3.4 Comparison of results between classic impact theory and the 2DOF 

system for plastic response, collision 4. 

 Classic 2DOF 

e [-] 0 0.033 

v1 [m/s] 1.8182 1.214 

v2 [m/s] 1.8182 1.879 

Ek0 [J] 200 000 200 000 

Ek3  [J] 18 182 18 382 

Ek3/Ek0 0.091 0.092 

 

  
a) b) 

  
c) d) 

Figure 3.8 Results from a plastic collision, Collision 4, where m1 = 1 000 kg, 

m2 = 10 000 kg, k1 = 100 MN/m, R1 = 200 kN and v0 = 20 m/s. 
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3.2 Analysis of 2DOF system with a barrier 

For impact against a non-rigid barrier, for example body 2 in a 2DOF system, the load 

response R2(t) will depend on the mass and stiffness of both bodies. 

 

m1 m2 

v0 
v = 0 

v0 

m1 m2 

k1 

v = 0 

k2 k1 

 

Figure 3.9 Illustration of a) Previous system used in section 3.1 b) 2DOF system 

used in this section. 

 

3.2.1 Elastic response 

 

u 

F, R 

utot 

Wi Wy 

R 

uel,1 

utot = uel,1 + upl 

Fk 

k 

u2 

R2 

k2 

k2 

R1 

k1 

∆u = u1 – u2 

 

Figure 3.10 The force-displacement relationship used for the two springs when 

studying a 2DOF system with elastic responses. 

The spring stiffness k1 has a linear elastic behaviour when the deformation is positive 

and a stiffness of zero when the deformation is negative. This is due to the fact that 

the two bodies should only interact through compression forces, not tension forces. 

The stiffness of the second spring k2 is considered to be linear elastic, see Figure 3.10. 

The displacement of the second body, u2, and thereby also the response in time R2(t) is 

affected by the eigenfrequency of both body 1, f1, and body 2, f2, thereby giving it a 

more complex appearance. This relation can be expressed as a mass ratio m1 / m2 and 

a frequency ratio, f1 / f2, for body 1 and body 2. The approach presented here is based 

on the assumption that the dynamic load that arises during impact can be transformed 

to an equivalent static load, F2,sta, which can be used for static analysis of the structure 

in question. A useful tool is then to use a loading factor βel that describes the relation 

between the equivalent static load F2,sta and the maximum dynamic load F2,el 

elelsta FF ,2,2    (3.1) 

It should be noted that the equivalent static load corresponds to the interior force R2 

acting on body 2 as seen in Figure 2.19 
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2,22,2 elsta ukRF   (3.2) 

The dynamic load F2,el for a hard impact, i.e impact against a rigid barrier, can be 

found by letting the initial kinetic energy Ekinetic be equal to the elastic strain energy 

Estrain of the colliding object 

strainkinetic EE   (3.3) 

The external work We which is equal to the initial kinetic energy is expressed as 

2

2

0mv
EW kinetice   (3.4) 

 

∆u 

  

Estrain 

u1  

elF ,2
 

k1 

 

Figure 3.11 Stress-strain curve showing the elastic strain energy. 

The area under the stress-strain curve is the elastic strain energy Estrain, which is equal 

to the internal work 

2

1,2 uF
EW

el

straini   (3.5) 

where the deflection u can be expressed as 

1

,2

1
k

F
u

el
  (3.6) 

Thereby the elastic strain energy can be expressed as  

1

2

,2

2k

F
E

el

strain   (3.7) 

By putting the initial kinetic energy equal to the elastic strain energy 

1

2

,2
2

01

22 k

Fvm el
  (3.8) 

the dynamic load can be expressed as 

110,2 mkvF el   (3.9) 
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The load factor in equation (3.1) can be defined as 

el

el
F

R

,2

2  (3.10) 

In Johansson (2014a) a diagram showing the relation between the load factor βel and 

the frequency ratio f1 / f2 is presented for different values of the mass ratio m1 / m2, this 

is shown in Figure 3.12. The tabulated values for the load factor βel can be found in 

Appendix C. 
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Figure 3.12 Relationship between load factor βel and frequency ratio f1 / f2 for 

different relations of the mass ratio m1 / m2 based on 

Johansson (2014a). 

A total amount of ten comparisons thought to be interesting have been carried out 

using different combinations of the mass ratio m1 / m2 and frequency ratio f1 / f2 in 

order to demonstrate the behaviour of an elastic impact, see Table 3.5. These 

combinations are marked in Figure 3.12. 

Table 3.5 Table showing the coordinates of tested impacts from Figure 3.12. 

Impact test number 
Mass ratio 

m1 / m2 

Frequency ratio 

f1 / f2 

Loading factor βel 

F2,sta / F2,el 

1 0.1 0.6 1.72 

2 0.5 0.5 1.55 

3 1.5 0.4 1.29 

4 0.2 0.2 1.08 

5 2.0 0.2 1.09 

6 0.2 0.15 1.17 

7 2.0 0.5 0.97 

8 3.0 1.0 0.52 

9 1.5 1.0 0.81 

10 0.5 1.0 1.22 
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Impact test number 2 is presented in Figure 3.13 and Figure 3.14 and impact test 

number 8 is presented in Figure 3.15 and Figure 3.16. The rest of the impact tests are 

presented in Appendix C. 

  

a) Deformation b) Velocity 

  

c) Impulse for body 1 d) Impulse for body 2 

Figure 3.13 Impact test number 2: m1 = 5 000kg, m2 = 10 000kg k1 = 1.25 MN/m, 

k2 = 10 MN/m, v0 = 20 m/s. 

In impact test number 2 it can be seen from Figure 3.13 that the impact lasts for about 

0.2 seconds. One thing that might seem a bit strange at first glance is that the impulse 

of reaction force Ir from body 1 shown in Figure 3.13c has an almost twice as large 

value as the original impulse of mass Im, or momentum, of body 1. This is due to the 

fact that body 1 bounces back with a velocity v1 ≈ -v0 as seen in Figure 3.13b. In order 

to achieve a change in the momentum for body 1 from p0 to p1 ≈ -p0 an impulse of 

Ir ≈ 2p0 is needed, see also Figure 2.6. 
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a) Kinetic energy - internal work body 1 b) Kinetic energy - work body 2 

  

c) Kinetic energy - internal work body 1 d) Load pulse 

Figure 3.14 Impact test number 2: m1 = 5 000 kg, m2 = 10 000 kg, k1 = 1.25 MN/m, 

k2 = 10 MN/m, v0 = 20 m/s. 

In Figure 3.14a it can be seen how the internal work and kinetic energy of body 1 

interact with each other with regard to time. The kinetic energy reduces with the same 

amount as the internal energy increases, this can also be seen in Figure 3.14c which 

shows the same plot but with regard to the deflection of body 1 instead of time. 
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a) Deformation b) Velocity 

  

c) Impulse for body 1 d) Impulse for body 2 

Figure 3.15 Impact test number 8: m1 = 30 000 kg, m2 = 10 000 kg, k1 = 30 MN/m, 

k2 = 10 MN/m, v0 = 20 m/s. 

In impact test number 8 it can be seen from Figure 3.15 that the impact lasts for a little 

bit more than 0.2 seconds, but compared to impact test number 2 the behaviour of the 

impact is different. Both the velocity and the impulse of body 1, see Figure 3.15b and 

Figure 3.15c, change in a step-like behaviour over time. This is due to that there are 

multiple impacts between body 1 and body 2, this phenomenon is discussed further 

with Figure 3.17. Except from this, the impulse displays again the same behaviour of 

having a larger value than the original impulse of body 1. 
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a) Kinetic energy - internal work body 1 b) Kinetic energy - work body 2 

  

c) Kinetic energy - internal work body 1 d) Load pulse 

Figure 3.16 Impact test number 8: m1 = 30 000 kg, m2 = 10 000 kg, k1 = 30 MN/m, 

k2 = 10 MN/m, v0 = 20 m/s. 

In Figure 3.16a it can be seen how the internal work and kinetic energy of body 1 

interact with each other with regard to time. The step-like behaviour is visible and the 

kinetic energy is mirrored by the internal energy, this can also be seen in Figure 3.16c 

that shows the same plot but with regard to the deflection of body 1 instead of time. 
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The shape of the load pulse that arises during impact between body 1 and body 2 has 

great influence on the response of the latter. How the shape of the load pulse is 

affecting the response is fairly complicated and depends on a combination of different 

properties such as mass ratio and frequency ratio for the two bodies. 

  

a) m1 / m2 = 0.5, f1 / f2 = 0.5 b) m1 / m2 = 2, f1 / f2 = 0.2 

  

c) m1 / m2 = 3, f1 / f2 = 0.5 d) m1 / m2 = 3, f1 / f2 = 1 

Figure 3.17 Load pulses for impact test numbers 2,5,7 and 8. 

The relations presented for an elastic impact using classic impact theory in 

section 2.3.1 is valid when body 2 does not have a support, meaning k2 = 0. In that 

case there will only be a single impact between the bodies as described by 

equations (2.28) and (2.29). However for a case where k2 ≠ 0 and v1 > 0 after impact, 

body 1 will catch up with body 2 and thereby causing one or several secondary 

impacts. This can be seen in Figure 3.17d where R1 after the initial impact reduces 

until body 1 again comes into contact with body 2. This phenomenon is especially 

common when both mass ratio m1 / m2 and frequency ratio f1 / f2 has relatively high 

values. 

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.2 0.4 0.6

F
o

rc
e 

[M
N

]

Time t [s]

R1

R2

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.2 0.4 0.6
F

o
rc

e 
[M

N
]

Time t [s]

R1

R2

-4.0

-2.0

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0.0 0.2 0.4 0.6

F
o

rc
e 

[M
N

]

Time t [s]

R1

R2

-4.0

-2.0

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

0.0 0.2 0.4 0.6

F
o

rc
e 

[M
N

]

Time t [s]

R1

R2



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:80 
43 

3.2.2 Elasto-plastic response 

The case with elasto-plastic response is a combination of the elastic and the plastic 

responses, for both bodies. The material has a maximum load capacity R for which the 

plasticization starts. These results are not discussed in the main report but are included 

in Appendix C since it might be interesting to see how an elasto-plastic system 

behaves. 

 

3.3 Comparison of impact with and without barrier 

In order to get a clearer picture of what the difference in response is for an impact 

with and without a barrier some impact tests are made where all properties are the 

same except for the use of a barrier, represented in the 2DOF system by the stiffness 

k2. Three collisions are demonstrated, one without a barrier, one with a relatively 

weak barrier and one with a relatively stiff barrier, see Table 3.6. 

Table 3.6 The properties used for each impact test. 

 m1 

[kg] 

m2 

[kg] 

k1 

[N/m] 

k2 

[N/m] 

v0 

[m/s] 

No barrier 1000 10000 1e6 0 20 

Weak barrier 1000 10000 1e6 1e7 20 

Strong barrier 1000 10000 1e6 1e10 20 

The difference in response for various parameters are shown in Figure 3.18 

From Figure 3.18a it can be seen that the impulse, the area under the force-time graph, 

varies both in size and duration depending on the stiffness of the barrier. Since the 

impulse can be expressed as I = mv it means that the soft barrier should take the 

longest time to reach its final velocity. This can also be seen in Figure 3.18c, which 

shows how the velocity of body 1 changes. For the tests using a barrier body 1 

bounces back with almost the same velocity as the incoming, while it in the test 

without a barrier receives a much lower velocity. The velocity of body 2, illustrated in 

Figure 3.18d, shows that for the impact without a barrier the velocity remains constant 

after the impact while the impact with a weak barrier receives a sinusoidal movement 

due to the lack of damping. The stiff barrier also gets this behaviour but here both the 

amplitude and period time is so small that it is not possible to see in this diagram. 

Figure 3.18b displays how the kinetic energy Ek of body 1 varies with time. Since this 

is also dependent on the velocity the impacts gets different final energy levels. 
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a) Force Body 1 b) Kinetic Energy Body 1 

  

c) Velocity Body 1 d)Velocity Body 2 

Figure 3.18 Comparison of response between impacts with and without a barrier. 
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4 Collision Impact Design 

This chapter will treat how to analyse a collision in different ways and with different 

tools. The objects studied here is a projectile colliding with a barrier of some kind. 

The barrier is seen as a simply supported beam and the projectile mainly as a vehicle. 

The projectile and the barrier can be translated into two bodies, each with a certain 

mass and stiffness, see Figure 4.1. This way the collision can be studied either 

according to the classic impact theory, as a 2DOF spring-mass system or with a finite 

element analysis (FEA). 

 

m1 m2 

v0 
v = 0 

body 1 body 2 

v0 

m1 

m2 

v0 

m1 m2 

k1 k2 
 

Figure 4.1 Illustration of how the two colliding objects can be translated into a 

model with two bodies with certain stiffness and mass. 

 

4.1 Structural parameters 

Structural parameters such as mass, stiffness and load capacity for the studied objects 

can be of great importance in an analysis and needs to be chosen carefully. In this 

section it is studied which values of the structural parameters that are appropriate to 

use for different objects. 

 

4.1.1 Reasonable parameters for vehicles 

Before 1951 vehicle designers believed that a stiffer vehicle body resulted in a safer 

vehicle for passengers subjected to a collision. This thinking, however, changed when 

Béla Barényi, a Mercedes-Benz engineer, invented the concept of crumple zones, 

Wikipedia (2014). According to this a vehicle is divided into three parts, a safety cage 

around the passenger compartment and two crumple zones, one in the front and one in 

the rear, see Figure 4.2. 

 

safety 

cage 

crumple zones 

 

Figure 4.2 The crumple zones in a modern vehicle are made out of lower strength 

material and have embedded weaknesses, Volvo Cars (2013). 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:80 
46 

The crumple zone can be described as a deformation zone with lower stiffness and 

load capacity than the safety cage, see Figure 4.3. This means that the crumple zone 

will absorb most of the energy during the impact due to large plastic deformations. 

The duration of the impact will then also be prolonged, resulting in a decreased 

deceleration of the vehicle which is desirable for the passengers. In analysis it is on 

the safe side to assume the safety cage to be infinitely stiff and that all internal work is 

done by the crumple zone. 

 

R 

u 
usc ucz 

Wi,cz 

Wi,sc 

Wi = Wi,cz + Wi,sc 

response in 

safety cage  

response in 

crumple zone 

 

Figure 4.3 Load-deflection curves and internal work for the safety cage and 

crumple zone, assuming there is a low load capacity for the crumple 

zone. 

To get a better picture of how load-deflection curves for vehicles really look like and 

what structural property values are appropriate to use, it is necessary to study results 

from real life crash tests. The response from different vehicles can vary quite a lot, 

depending on its size and weight. The results can also depend on which testing facility 

carried out the tests and how they were made. Different crash test results are therefore 

analysed and discussed in this section, to find appropriate structural values to use in 

the analyses to be carried out. The common types of crash tests discussed in this 

section are presented in Table 4.1. 

Table 4.1 Common types of crash tests discussed in this section. 

Description Abbreviation 

Offset deformable barrier test – There is an overlap between the 

vehicle and the barrier. The barrier is made out of a aluminium 

honeycomb material to simulate another vehicle. 

ODB 

Full width deformable barrier test – The barrier width equals the 

entire width of the vehicle. The barrier is made out of a 

aluminium honeycomb material to simulate another vehicle. 

FWDB 

Full width rigid barrier test – The barrier is the entire width of the 

vehicle and is assumed non-deformable. 
FWRB 

The Euro NCAP frontal impact crash test is performed with a 40 percent overlap 

between the vehicle and the barrier, called an offset deformable barrier (ODB) test, 

see Figure 4.4. The barrier consists of a honeycomb structure made out of aluminium, 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:80 
47 

which will get a plastic deformation under loading in a controlled manner, see  

Figure 4.5. 

 

40 % overlap = 40 % of the width of the car 

64 km/h 

 

 

540 mm 

1
0

0
0
 m

m
 

 

Figure 4.4 Frontal offset impact test according to Euro NCAP, based on 

EURO NCAP (2014). 

  

a) b) 

Figure 4.5 a) deformable barrier consisting of an aluminium honeycomb structure 

b) deformable barrier used in Euro NCAP ODB crash test, 

Dynamore GmbH (2014) and EURO NCAP (2007). 

The first results come from a test discussed in a paper by Huibers and de Beer (2001). 

In this paper was the front stiffness of modern European vehicles studied, by 

comparing results from Euro NCAP frontal impact crash tests carried out by TNO 

Crash Safety Centre in the Netherlands. Some of these results, in form of 

force-displacement diagrams, are presented for different types of vehicles in  

Figure 4.6 and the corresponding vehicle properties are presented in Table 4.2. The 

vehicles are grouped into three different categories, medium family cars such as 

Toyota Corolla, large saloon cars such as Volvo S70 and MPV’s or minivans such as 

Chrysler Voyager. To estimate the behaviour of these three vehicle categories a 

bilinear curve was fitted to the graphs and the stiffnesses were calculated. These 

approximated stiffnesses are also presented in Figure 4.6, where k1,1 and k1,2 are the 

two stiffnesses during loading, ubi is the deformation where the stiffness is changed 

and k1,3 is the stiffness at unloading. 
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Table 4.2 Vehicle properties from crash tests with a 40 % overlap and a velocity 

of about 17.8 m/s, based on Huibers and de Beer (2001). 

Car model 
Kerb mass 

[kg] 

Test mass 

[kg] 

Velocity 

[m/s] 

Medium size family cars 

VW Golf 1140 1336 17.8 

Citroen Xsara 1080 1100 17.8 

Mitsubishi Lancer 1244 1257 17.8 

Renault Megane 1060 1296 17.8 

Suzuki Baleno 960 1170 17.8 

Toyota Corolla 1060 1275 17.8 

VW Beatle 1228 1518 17.8 

Ford Focus 1080 1383 17.9 

Opel Astra 1100 1325 17.8 

Ford Escort 1080 1363 17.9 

Mercedes A-class 1070 1267 17.8 

Large saloon cars 

BMW 520I 1485 1682 17.9 

Saab 95 1485 1713 17.7 

Toyota Camry 1385 1604 17.8 

Mercedes E200 1440 1650 17.8 

Opel Omega 1455 1666 17.8 

Audi A6 1400 1663 17.8 

Volvo S70 1430 1597 17.8 

MPV's 

Renault Espace 1520 1713 17.9 

Chrysler Voyager 1800 2040 17.8 

Mitsubishi Space wagon 1570 1768 17.9 

VW Sharan 1690 1906 18 

Peugeot 806 1550 1748 17.8 

Vauxhall Sintra 1650 1933 17.8 

Kerb mass in Table 4.2 is the mass of the vehicle without passengers or cargo, but 

with standard equipment and fuel included. 
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Figure 4.6 Force-displacement graphs from crash tests with a 40 % overlap and a 

velocity of about 17.8 m/s, based on Huibers and de Beer (2001). 

Approximate stiffnesses for different parts of the curves are presented. 
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The fact that the Euro NCAP frontal impact crash test is performed with a 40 percent 

overlap is a problem for the analysis in this thesis since a full width collision is of 

higher interest. This is because of the higher vehicle stiffnesses it exhibits, due to 

larger impacting area, thus leading to larger impact forces. In order to adjust the 

values from this kind of tests to better fit the purpose of this thesis, the stiffnesses are 

later multiplied by two to simulate a full frontal impact, see Table 4.3. This 

corresponds quite well to a full frontal crash test, as will be shown later in this section. 

The breakpoints where the stiffness changes however, are supposed to be the same 

regardless of the size of the overlap. The velocity of the vehicles are set to 64 km/h 

(17.8 m/s) in the above crash tests, but the stiffnesses are here assumed to be constant 

in a limited interval around this impact speed. 

Another problem with the Euro NCAP crash test, for the subject of this thesis, is that a 

deformable barrier is used in order to simulate a collision with another vehicle. This 

means that the barrier will absorb some of the impact energy and give a lower overall 

stiffness, see Figure 4.5. In order to minimize the effect of the barrier on the stiffness 

distribution, the first 40 centimetres of the force-displacement curve is ignored when 

approximating the stiffnesses, as proposed by Huibers and de Beer (2001). 

The next crash test studied was found in Struble (2014) where the topic, how to 

analyse load cell barrier data, was discussed. This is a full width rigid barrier (FWRB) 

collision which means that the full width of the car crashes into a non-deformable 

barrier. The test was performed by the National highway traffic safety administration 

(NHTSA). The force-displacement graph from the test with an approximated bilinear 

curve superimposed on top can be seen in Figure 4.7. 
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Figure 4.7 Force-displacement graphs from full frontal crash test (fixed barrier 

NCAP test) of a Toyota Corolla 2004 with a velocity of 15.6 m/s, 

obtained from load cells in NHTSA test no 5404, based on 

Struble (2014). 

The results in Figure 4.7 clearly display a much higher stiffness than the results in 

Figure 4.6. This seems reasonable since, as discussed above, a full frontal impact 
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should exhibit a stiffer response. Figure 4.7 also indicates a maximum load capacity 

beyond which no further increase of load can be made, but where the deformations 

continues to grow. 

Another crash test study is described in a paper by Takizawa, et al. (2005) for Honda 

R&D Co. Ltd., where load cell moving deformable barrier (LCMDB) crash tests were 

evaluated. Here both full width deformable barrier (FWDB) and offset deformable 

barrier (ODB) tests were studied. Two force-displacement graphs for a Honda from 

this paper with approximated bilinear curves superimposed on top can be seen in  

Figure 4.8. 
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Figure 4.8 Force-displacement graphs from two different crash tests of Honda 

cars obtained from load cells, a) full width frontal impact with a 

velocity of 15.6 m/s and b) offset frontal impact with a velocity of 

17.8 m/s, based on Takizawa, et al. (2005). 

From these two tests one can see that the previous assumption about a doubled 

stiffness for full width impact, compared to offset impact, is reasonable. 
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The last crash test results studied are taken from a master thesis carried out at the 

University of Utah, Tolman (2008). In this thesis several results from FWRB tests 

were compared for different vehicles with different impact velocities. In Figure 4.9 

are the results for a Volvo S40 presented in shape of force-displacement graphs, with 

approximated bilinear curves superimposed on top, for two different velocities. 
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Figure 4.9 Force-displacement graphs from two full width impact crash tests of a 

Volvo S40, one with a velocity of 11.2 m/s and one with 15.6 m/s. 

Results from NHTSA tests no 5092 and no 5441, data is obtained from 

load cells, based on Tolman (2008). 

From Figure 4.9 can it be concluded that the force-displacement relationship for 

different velocities shows a similar behaviour, and the same stiffnesses can, 

approximately, be used independent of the velocity. One can also see that this test 

shows a much higher stiffness than the former tests discussed. This is probably due to 

the full width barrier that is also rigid, and can thus not deform.  

The respective calculated stiffnesses and breakpoints between them for all seven crash 

tests are presented together with the mean masses for each type of vehicle, in  

Table 4.3. The corresponding force-displacement curves, for an internal work equal to 

the kinetic energy before the impact for each vehicle, are illustrated in Figure 4.10. 

The stiffnesses from the ODB tests are here multiplied by two, as proposed earlier. 
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Table 4.3 Frontal stiffness for different stages of loading and for different types of 

vehicles, based on Figure 4.6, Figure 4.7, Figure 4.8 and Figure 4.9. 

 
m  

[kg] 

k1,1  

[kN/m] 

k1,2  

[kN/m] 

k1,3  

[kN/m] 

ubi  

[m] 

Medium family cars, 

ODB 
1 300 520 2 400 12 000 0.70 

Large saloon cars, ODB 1 700 200 1 800 8 000 0.50 

MPV’s (minivans), ODB 1 900 580 1 600 10 000 0.50 

Toyota Corolla 04, 

FWRB 
1 300 790 0 7 900 0.50 

Honda, ODB - 740 1 800 ∞ 0.60 

Honda, FWDB - 680 1 700 ∞ 0.40 

Volvo S40, FWRB 1 600 1 000 4 200 8 000 0.30 

 

Figure 4.10 Force-displacement diagrams for three different types of vehicles, data 

from Table 4.3. Internal work done for each type corresponds to the 

kinetic energy prior to impact. 

The behaviour of the different vehicles is quite similar, with a few exceptions, see 

Figure 4.10. The saloon cars generally have a large crumple zone and it is therefore 

possible to have a low stiffness. This fact together with their relatively high weight is 

the reason for the large deformations seen in this type of vehicle. The Toyota Corolla 

is the only vehicle that does not exhibit a stiffening behaviour after a certain 

displacement. Instead it shows an ideal plastic behaviour, which probably would look 

different in an impact with higher velocity, i.e. larger deformations. One of the 

vehicles has a much higher stiffness than all the others, the Volvo S40. The reasons 

therefore are hard to identify, one is that the barrier is rigid but that should not make 

such an apparent difference. The impact speed in this test, 15.6 m/s, was also lower 

than in some of the other tests. It has to be considered though, that the approach used 
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to determine all of the stiffnesses was very approximate, and the error margin is 

therefore of noticeable size. 

4.1.2 Parameters for concrete beam 

The concrete beam represents a low protective barrier of some kind and can, for 

simplicity reasons, be seen as simply supported, see Figure 4.11. 

 

lb 

a) b) 
hb 

wb 

hb 

v0 
EIb 

m1 

 

Figure 4.11 Illustration of the beam representing the barrier, a) top view and 

b) cross section. For dimensions and reinforcement specifications see 

Table 4.4. 

A beam with reasonable geometry and amount of reinforcement is chosen, to be 

studied further in collision impact analyses in later sections, see Table 4.4. The 

section and stiffness properties are calculated according to Appendix G. 

Table 4.4 Properties of the beam, representing a barrier, studied in this thesis. 

Length lb 5 m 

Height hb 0.3 m 

Width wb 1 m 

Mass mb 3600 kg 

Concrete class C30/37 

Ec 33 GPa 

Reinforcement B500B Φ16 s100 

Es 200 GPa 

Concrete cover c 40 mm 

Effective height d 252 mm 

II 2.25∙10
9
 mm

4 

III 6.10∙10
8
 mm

4 

EIb = Ec∙III 18.30 MNm
2 
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4.2 Transformation of beam to spring-mass system 

4.2.1 General principle 

To be able to use the simplified 2DOF model for the collision, the beam needs to be 

transformed into a SDOF spring-mass system, see Figure 4.12. From this figure it is 

clear that the displacement in the system point of the beam and in the spring-mass 

system is the same. Here the system point coincides with the section with largest 

deflection in the beam, but it can also be chosen to be placed at the section where a 

point load is acting Johansson and Laine (2012). As said before, damping is neglected 

when dealing with impact loads due to the very short duration of the impact. 
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Figure 4.12 Illustration of how a loaded beam is transformed into an equivalent 

SDOF system. 

The relationship between the properties of the beam and the SDOF system, assuming 

a linear elastic response in the spring, can be stated as 

bm mm    (4.1) 

bk kk    (4.2) 

bF FF    (4.3) 

where mb and kb are the mass and stiffness of the beam and Fb is the external force 

acting on the beam. κm, κk and κF are the corresponding transformation factors for the 

three properties. The equation of motion for a SDOF system without damping from 

equation (2.36) 

)(tFkuum   (4.4) 

can now be written as 

 tFukum bFbkbm    (4.5) 

By utilizing that the response in the beam under static load is 

  ukuR bb   (4.6) 

equation (4.5) finally becomes 
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   tFuRum bFbkbm    (4.7) 

 

The transformation factors are decided based on the theory of energy conservation 

between the beam model and the spring-mass system. The kinetic energy of the mass 

and the work done by the external and the internal force should in the two systems, 

according to this, be equal, Johansson and Laine (2012). 
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where vs is the velocity of the SDOF system as well as the system point and m′(x) and 

v(x) are the mass per unit length and the velocity at section x of the beam respectively.  

For a beam with constant mass per unit length equation (4.8) becomes 
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By using that 

t

u
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  (4.10) 
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where ∆us and ∆u(x) are the displacements at the system point and along the beam 

respectively, equation (4.9) can, for an arbitrary time step, be written as 
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By combining this with equation (4.1) the transformation factor can be stated as 
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 Conservation of external work 4.2.1.2

The conservation of external work between the two systems gives 
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se dxxuxquFW
0

 (4.14) 

where q(x) is the load per unit length along the beam. The total external force acting 

on the beam is 
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and if inserted in equation (4.14) 
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By now using equation (4.3) the transformation factor can be written as 
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For a beam with concentrated load equation (4.14) becomes 

sbse uFuFW   (4.18) 

which will, by using equation (4.3), give a transformation factor of 

1
s

s
F

u

u
  (4.19) 

 

 Conservation of internal work 4.2.1.3

The conservation of internal work between the systems finally needs to be studied. 

The equilibrium yields 
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where N(x), V(x) and M(x) are normal force, shear force and bending moment along 

the beam and E is the elastic modulus, A is the cross sectional area, βshear is a factor 

regarding the shear stress, G is the shear modulus and u′′(x) is the curvature of the 

beam. In general the contributions from normal and shear force are small in 

comparison to the effect of the moment, thus they can be neglected and 

equation (4.20) is simplified to 
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By combining this with equation (4.2), the transformation factor becomes 

   



 




lx

x sb

k dx
uk

xuxM

0

2
  (4.22) 

The stiffness of the beam can also be written as 

s

b

b
u

F
k   (4.23) 

and by using this the transformation factor can now be written 
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4.2.2 Determination of transformation factors 

According to Chapter 5 in Biggs (1964) 

Fk    (4.25) 

This fact can be used by dividing all terms in equation (4.5) by κF  

 tFukum bb

F

k
b

F

m 







  (4.26) 

and by introducing the factor κmF 

F

m
mF




   (4.27) 

Equation (4.26) can now be stated as 

 tFukum bbbmF   (4.28) 

which shows that only the mass of the beam needs to be transformed when the 

equation of motion is formed for the SDOF system. 

To determine both κm and κF the variables u(x) and us needs to be determined. us can 

be determined from u(x) by defining the position of the system point, which is chosen 

to coincide with the point load. The factor κF, is as stated in equation (4.19), equal to 1 

for a point load. 
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 Elastic response for a point load 4.2.2.1

When the beam is assumed to have an elastic response and is subjected to a point 

load, the displacements u(x) and us can be defined as 

22
3

3


b

b
s

EI

lF
u   (4.29) 
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where , β, Fb, l, x and EIb are explained in Figure 4.13, and β = 1-, based on 

Lundh (2000). 
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Figure 4.13 Elastic response of a beam subjected to a point load. 

By using equation (4.13) together with equation (4.29) and (4.30), the transformation 

factor can be stated as 

and after solving the integrals it can be written as a function of  and β  
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 Plastic response for a point load 4.2.2.2

If the beam instead is assumed to have a plastic response when it is subjected to a 

point load, the displacement u(x) can be defined as 
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 (4.33) 

where , β, x and l are explained in Figure 4.14. 
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Figure 4.14 Plastic response of a beam subjected to a point load. 

By using equation (4.13) together with equation (4.33), the transformation factor for 

the mass is then stated as 

and finally the transformation factor can be defined as a function of  and β  
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 Transformation factors for different cases 4.2.2.3

The transformation factors κm, κF and κmF are now calculated for different values of  

and β, using equations (4.19), (4.32) and (4.35), for both the elastic and the plastic 

response and the results are presented in Table 4.5. 

Table 4.5 Transformation factors for point loads at different distances from the 

support, with the system point coinciding with the point load. 

 
          

 0.5 0.4 0.3 0.2 0.1 

Elastic response 

m  0.486 0.518 0.642 1.011 2.803 

F  1.000 1.000 1.000 1.000 1.000 

mF  0.486 0.518 0.642 1.011 2.803 

Plastic response 

m  0.333 0.333 0.333 0.333 0.333 

F  1.000 1.000 1.000 1.000 1.000 

mF  0.333 0.333 0.333 0.333 0.333 

 

In reality, the incoming object in a collision always has a certain area and the load 

should therefore more accurately be treated as a distributed load, see Figure 4.15. 

 

qb (t) mb, EIb 

l 

x 
βl l 

γl 

 

Figure 4.15 Beam subjected to a distributed load with limited distribution. 

Transformation factors for a distributed load, acting at different distances from the 

support and with different lengths of the distribution, were calculated numerically and 

are presented in Table 4.6, Table 4.7 and Table 4.8, based on work by 

Johansson (2014b). In these tables γ = 0 corresponds to a point load, and only the 

elastic response is treated for the distributed load. 
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Table 4.6 Comparison of transformation factors for different values of the 

distribution γ, when  = 0.5. 

 = 0.5 
 

 
 

 
 

 
 

 
 

 

γ 0.0 0.1 0.2 0.3 0.4 

Elastic response 

m  0.486 0.486 0.488 0.491 0.494 

F  1.000 0.995 0.982 0.961 0.933 

mF  0.486 0.489 0.497 0.511 0.529 

 

Table 4.7 Comparison of transformation factors for different values of the 

distribution γ, when  = 0.3. 

 = 0.3 
 

 
 

 
 

 
 

 
 

 

γ 0.0 0.1 0.2 0.3 0.4 

Elastic response 

m  0.642 0.644 0.650 0.658 0.668 

F  1.000 0.994 0.979 0.955 0.919 

mF  0.642 0.648 0.664 0.689 0.727 

 

Table 4.8 Comparison of transformation factors for different values of the 

distribution γ, when  = 0.1. 

 = 0.1 
 

 
 

 
 

 

γ 0.0 0.1 0.2 

Elastic response 

m  2.803 2.853 2.988 

F  1.000 0.955 0.942 

mF  2.803 2.989 3.171 
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When studying Table 4.6, Table 4.7 and Table 4.8 one can conclude that the 

difference in the transformation factor κmF is slightly increased when the distribution 

is larger. This difference also grows larger when  get smaller, i.e. when the load acts 

close to the support. As can be seen in Table 4.6, when the load acts at midspan, the 

difference in κmF is only about 8 percent when γ = 0.4 compared to a point load, i.e. 

γ = 0. For the case when  = 0.3, see Table 4.7, the same difference in κmF is about 

12 percent. When  = 0.1, see Table 4.8, the difference in κmF is about 12 percent 

when γ = 0.2 compared to a point load. With this in mind, it can be assumed safe to 

treat a load with limited distribution as a concentrated point load, as long as the 

distribution is not too large and not acting too close to the support. 

 

4.2.3 Stiffness of simply supported beam subjected to a point load 

During the elastic response, the stiffness of the beam kb can be determined by using 

the fundamental correlation between load and displacement. For a point load this 

correlation can be written as 

sbb ukF   (4.36) 

If now the definition of us in equation (4.29) is utilized together with equation (4.36), 

the stiffness kb as a function of  and β can be defined as 

223

3

l

EI
k b

b   (4.37) 

The beam stiffness was calculated for different values of  using equation (4.37) and 

the results and presented in Table 4.9. 

Table 4.9 Beam stiffness kb for point loads at different distances from the support, 

with the system point coinciding with the point load. 

 
 

 
 

 
 

 
 

 
 

 

 0.5 0.4 0.3 0.2 0.1 

Elastic response 

kb 48.00 









3l

EI b  52.08 
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
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3l

EI b  68.03 









3l
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3l

EI b  370.4 



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




3l

EI b  

In Table 4.9 it can be seen that the beam stiffness kb is proportional to the bending 

stiffness of the beam EIb, while it is inversely proportional to the length of the beam to 

the power three, l
3
. This means that the length of the beam will have much more 

influence on the stiffness than the bending stiffness EIb. Regarding the position of 

loading, the stiffness grows exponentially when the load acts closer and closer to the 

support. The stiffness is almost eight times higher when  = 0.1 compared to loading 

at midspan. 
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4.2.4 Equivalent static load 

Since most civil engineers are more familiar working with static loads, it is 

convenient to translate the dynamic impulse load into an equivalent static load. This is 

done by determining the static load Fsta that generates the same amount of exterior 

work We on the structure as the dynamic impulse I. For an elastic structure the 

equivalent static load is obtained by using the relationship for the external work 

2

elsta

y

uF
W   (4.38) 

which if combined with equation (4.39) 

2

2

elb

y

uk
W   (4.39) 

results in 

elbsta ukF   (4.40) 

where kb is the stiffness of the beam and uel is the elastic deformation. An alternative 

way to find the equivalent static load for an elastic response is to use the load factor 

βel discussed in section 3.2.1. 

 

4.3 Impact load according to Eurocode 

Impact is, according to annex C in Eurocode 1-7, defined in the following way: 

“Impact is an interaction phenomenon between a mo ing object and a structure, in 

which the kinetic energy of the object is suddenly transformed into energy of 

deformation”, CEN (2010). 

According to Eurocode, actions that depend on impact should be determined by a 

dynamic analysis or represented by an equivalent static force that gives the same 

effects on the structure. For cars the collision force should be applied at an 

height h of 0.5 m above the carriageway, over an application area, a, of 

0.25 m (height)  1.5 m (width) or the member width. For trucks the collision force 

may be applied at any height between 0.5 m-1.5 m above the carriageway and over an 

application area of 0.5 m (height) x 1.5 m (width) or the member width,  

see Figure 4.16. 

 

a 

h 

 

Figure 4.16 Application area of collision force on supporting substructure, based on 

CEN (2010). 
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Eurocode uses two different approaches to determine the equivalent static force. The 

first approach is based on suggested equivalent static forces in the direction of vehicle 

travel, given in section 4.3 of EC 1-7. These have a magnitude of 1 000 kN, 750 kN 

and 500 kN for structures adjacent to national roads, rural roads and roads in urban 

areas, respectively, CEN (2010). It should be noted that this method involves many 

uncertainties since the effects of mass and stiffness for both the vehicle and structure 

is not taken into account here. Therefore the result may be inaccurate,  

Al-Thairy and Wang (2013). 

The alternative approach can be found in annex C in EC 1-7, called the dynamic 

impulse approach, where a distinction is made between hard impact and soft impact. 

For hard impact the colliding object is assumed to deform linearly during the impact 

phase while the structure is considered to be rigid and immovable. For a soft impact it 

is the other way around, the colliding object is considered as rigid and the structure is 

assumed to absorb all of the impact energy. This means that preventive measures 

should be made so that the ductility of the structure is sufficient enough to absorb the 

total kinetic energy of the colliding object. The maximum resulting dynamic 

interaction force is derived by letting the initial kinetic energy be equal to the elastic 

strain energy of the colliding object, for a complete derivation see section 3.2.1. 

k

Fvm

22

22




 (4.41) 

So the force is 

mkvF r   (4.42) 

where vr is the object velocity at impact, k is the equivalent elastic stiffness of the 

object in case of hard impact or the stiffness of the structure in case of soft impact and 

m is the mass of the incoming colliding object. 

The force may also be considered as a rectangular pulse on the surface of the structure 

with a pulse duration, Δt, that is derived by substituting equation (4.42) into the 

momentum conservation stated in equation (4.43). 

rvmtF   (4.43) 

which gives 

rr vmtmkv   (4.44) 

that leads to 

k

m
t   (4.45) 

It is not specified in the code but the way that equation (4.43) is stated implies that a 

plastic material response for the vehicle is used. If an elastic response was used the 

change in momentum would create an impulse twice as large compared to the one 

used here, see also section 3.2.1. 
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Equation (4.42) gives the maximum dynamic force on the surface of the structure, but 

inside the structure these forces may give rise to dynamic effects. An upper limit for 

these effects can be determined if the structure is considered elastic and the load is 

applied by a step function. In that case the dynamic amplification factor φdyn = 2.0. If 

the rise time of the impulse is taken into consideration, calculations will lead to 

amplification factors ranging from below 1.0 up to 1.8, depending on the dynamic 

characteristics of both structure and object. For a general case it is recommended that 

a direct dynamical analysis is used to determine φdyn CEN (2010). The amplification 

factor corresponds well to the load factor βel described in section 3.2.1, even though it 

is only derived for elastic material response. 

In this approach either the deformations of the impacting object or the structure is not 

considered depending on the assumption of hard or soft impact. This is a 

simplification since in most cases both the vehicle and the structure will undergo 

some deformation and hence absorb some of the impact energy. This means that the 

impact force between the vehicle and structure is overestimated for hard impact and 

underestimated for soft impact, Al-Thairy and Wang (2013). 
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5 Collision Impact on a Simply Supported Beam 

This chapter presents and discusses the results from two computational models, the 

2DOF system and a FE model, and compares the difference in their responses. 

 

5.1 2DOF - Effect of impact position on a beam 

To analyse the effect of the position of impact on a beam, the theory of beam to 

spring-mass system transformation from section 0 was implemented in the 2DOF 

algorithm, described in Chapter 3. The impact load is seen as a point load, meaning 

that the distribution is seen as infinitely small. The mass mb was adjusted using the 

transformation factor κm,el from equation (4.32) giving the corresponding mass in the 

2DOF system m2 and the stiffness of the beam kb was calculated using  

equation (4.37), see Appendix G. This means that the beam is seen as both stiffer and 

heavier when the load is applied closer to the support. This can be seen in Figure 5.1 

where the relative size of the mass and stiffness, kb,rel and κm,el,rel, is plotted against the 

loading position α on the beam, which describes the magnitude of the parameter in 

comparison to when loading at midspan, i.e. α = 0.5, see equation (5.1) and (5.2). 
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Figure 5.1 Relative size of the mass and stiffness is plotted against the loading 

position. 

Not only the mass and stiffness of the beam will grow larger closer to the support, but 

also the eigenfrequency of the beam fb. This is because kb changes more than κm,el and 

can be understood from equation (5.3), which is based on equation (2.41). 
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The relative size of the eigenfrequency fb,rel, see equation (5.4), and the theoretical 

natural frequency fnatural of the beam are plotted against α in Figure 5.2.  
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  (5.4) 

The difference between these is small close to midspan but is over twenty percent at 

α = 0.05, which could lead to a difference in response between the 2DOF and the FE 

model. 

 

Figure 5.2 Relative size of the calculated frequency of the beam and the theoretical 

natural frequency is plotted against the loading position. 

The study in this section is based on the concrete beam described in section 4.1.2. The 

velocity v0 of the incoming object is set to 20 m/s, the mass m1 is set to 1 000 kg and 

the stiffness k1 is set to 300 kN/m. These values correspond sufficiently well with a 

vehicle, and the same stiffness is recommended in Eurocode, see section 4.3. The 

stiffness values are then varied to create five different property sets for the analyses, 

where property set 1 corresponds to the original case described above, see Table 5.1. 
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Table 5.1 The different sets of properties used in the analyses. 

Property set 

number 

Spring stiffness 

k1 [kN/m] 

EIb 

[MNm
2
] 

1 300 18.302 

2 75 18.302 

3 1 200 18.302 

4 300 4.576 

5 300 73.208 

The study is first performed with the original values for the stiffnesses, while then 

also the other property sets are analysed. In the following sections are only results 

presented for some of the property sets, but all of the results can be seen in  

Appendix D. 

 

5.1.1 Original beam – Property set 1 

The first study is made with the exact same beam as described in section 4.1.2. The 

results are presented in form of graphs for how the reaction force R, displacement u 

and velocity v for the two bodies depend on time during the impact. Five different 

positions of impact, from α = 0.5 to α = 0.1, are treated and described in this section. 

See Figure 5.3 for the response of the incoming object and Figure 5.4 for the response 

of the beam. 

In Figure 5.3 it can be seen that the responses for the incoming object does not change 

very much when α varies. The reaction force R1 is a little bit higher and the maximum 

force is reached a little bit earlier for lower α values. The displacement ubi and 

velocity v1 are on the other hand nearly identical for the different loading positions. 

This is probably due to that the stiffness of the beam is, already in midspan, over 

twenty times larger than the stiffness of the incoming object. The influence of the 

increased stiffness closer to the support is therefore negligible. 

If instead Figure 5.4 is studied, it is clear that the responses differs a little bit more for 

the beam. The reaction force R2 is this time lower for lower values of α, which is the 

opposite case compared to the force R1. This may seem odd since from a static point 

of view a higher force from the incoming object should result in a higher reaction 

force in the beam. The reason for this however is that the load factor βel decreases 

when α decreases, in this particular case. When α decreases both the frequency ratio 

and the mass ratio decreases. This reasoning can be seen in the graphs in Figure 3.12, 

together with the fact that the frequency ratio is roughly 0.27 and the mass ratio 0.57 

when the impact load is applied at midspan. 

For the displacement u2 and velocity v2 the difference is really significant. The values 

gets smaller and smaller with decreasing α while the shape of the graphs is virtually 

maintained. This is understandable since a higher stiffness and larger mass should 

give smaller displacements and velocities. 
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Figure 5.3 Results from the simulated collision describing the differences in 

position of impact, for the incoming object. Reaction force R1, 

displacement u1 and velocity v1 are plotted against time. 
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Figure 5.4 Results from the simulated collision describing the differences in 

position of impact, for the beam. Reaction force R2, displacement u2 and 

velocity v2 are plotted against time. 
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5.1.2 Effect of beam stiffness 

 Stiffer beam – Property set 5 5.1.2.1

The beam from section 4.1.2, studied in the previous section, is now made four times 

as stiff, to be able to examine the difference in response. The results are again 

presented in form of graphs, but this time only displaying how the reaction force R for 

the two bodies varies during the impact. Five different positions of impact are treated 

and described here with the corresponding value of α, see Figure 5.5. The rest of the 

results can be found in Appendix D. 

 

 

Figure 5.5 Results from the simulated collision with a stiffer beam, describing the 

differences in position of impact for both the incoming object and the 

beam. 

The reaction force R1 in the object displays in this case almost the exact same 

response regardless the position of loading, see Figure 5.5. The reason is the same as 

discussed in the previous case, that the beam is so much stiffer than the colliding 

object. And this time the beam is even stiffer, making it over 80 times as stiff as the 

object when loading at midspan. The reaction force in the beam R2 behaves in a 

similar way as for the original beam, when loading at different positions. 
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 Softer beam – Property set 4 5.1.2.2

The same beam from section 4.1.2 is now made one fourth as stiff, to be able to 

examine new differences in the response. The results are again presented in form of 

graphs, displaying how the reaction force R for the two bodies varies during the 

impact. Five different positions of impact are treated and described here with the 

corresponding value of α, see Figure 5.6. The rest of the results can be found in 

Appendix D. 

 

 

Figure 5.6 Results from the simulated collision with a softer beam, describing the 

differences in position of impact for both the incoming object and the 

beam. 

For the softer beam the difference in reaction force R1 for different loading positions 

is more significant, see Figure 5.6. This is due to that the difference in stiffness 
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increases when α decreases. This is because the lower beam stiffness gives a new 
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load factor βel this time increases when α decreases. The frequency ratio f1 / f2 is for 
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5.1.3 Effect of spring stiffness 

If instead the stiffness of the spring is changed by a factor four, property sets 2 and 3 

from Table 5.1, the behaviour are identical to when the stiffness of the beam is 

changed, but the magnitude of the response is different. This is due to that the 

deciding factor when determining the response of the system is the frequency ratio 

between the beam and the impacting body. Since this remain unchanged compared to 

before the response also remains constant. Increasing the spring stiffness a certain 

amount is equivalent to decreasing the beam stiffness with the same amount and will 

produce results with equal behaviour. Therefore these results are only presented in 

Appendix D. 

 

5.2 Finite element model 

To perform detailed analyses of the system the finite element software ADINA is used 

ADINA R & D, Inc (2014). The FE model consists of a simply supported concrete 

beam that is connected to a moving mass through a spring which represents the 

impacting object. If this beam model is compared with the 2DOF system used 

previously the beam represents the second mass and spring, see Figure 5.7. 
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Figure 5.7 The 2DOF system implemented in the FE software. 

Elastic 3D beam elements with an element length of 2 percent of the total length are 

used to model the beam. The impacting object is modelled by a spring element with a 

point mass travelling with an initial velocity. One potential problem when using 

ADINA is that when calculations of a concrete beam in state II are performed, 

ADINA is not able to recognise that the section is cracked. Instead the software uses 

the moment of inertia for the uncracked concrete section and thereby greatly 

overestimates the stiffness of the beam. In order to overcome this problem an 

equivalent Young’s modulus EII is used to obtain the correct state II bending stiffness 

of the beam. This is done by multiplying the original Young’s modulus with the ratio 

between the moment of inertia in state II and state I 

c

I

II
II E

I

I
E   (5.5) 

See also Appendix G for calculation of the equivalent Young’s modulus and 

Appendix A for ADINA command files. 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:80 
75 

By changing the Young’s modulus the speed of the force wave in the material is also 

changed. The wave speed is dependent on Young’s modulus and the density of the 

material 



E
c   (5.6) 

Firstly, a reference test is performed using a beam with what is assumed to be of a 

reasonable size and stiffness with properties according to section 4.1.2. The spring is 

considered to be linear elastic and the stiffness k1 is chosen to be 300 kN/m, in 

accordance with what is used for a vehicle impact in Eurocode 1-7, CEN (2010). The 

impacting object is assumed to have a mass of 1 000 kg and an initial velocity of 

20 m/s. In the following analyses the stiffness of the beam and spring respectively is 

altered by a factor 4, thereby changing the natural frequency f and period time T of the 

system with a factor 2, in accordance with equation (2.41). From this five different 

sets of properties are created and summarized in Table 5.2. 

Table 5.2 The different set of properties used in each analysis. 

Property set 

number 

Spring stiffness 

k1 [kN/m] 

Equivalent 

Young’s modulus 

EII [GPa] 

EIb = EII∙II 

[MNm
2
] 

1 300 8.134 18.302 

2 75 8.134 18.302 

3 1200 8.134 18.302 

4 300 2.034 4.576 

5 300 32.537 73.208 

For each set of properties there is also five different load application points on the 

beam to simulate an arbitrary impact position, see Figure 5.8. 

 

 

 

 

 

 

 

 

 

 

 

 0.5 0.4 0.3 0.2 0.1 

Figure 5.8 The different load application points. 

To understand the results from an FE analysis it is important to know how they are 

obtained and what they really describe. In the FE software used the shear force in 

each element is taken as a mean value over the element. When extracting the shear 

force results the value in the first local node of each element had to be chosen, see 

Figure 5.9. This leads to that the obtained curve is offset to the left with the length of 

half an element and the values are a little bit lower than they should be. But because 

of the large amount of elements used, namely fifty, the error will be negligible. The 

moment along the beam is obtained in the same way as the shear force. The 
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displacement, on the other hand, can be obtained specifically for each node along the 

beam and the response will more or less be exact, see Figure 5.9 again. 

 

1 

1 

2 3 4 5 

3 4 5 6 2 

V(x) 

u(x) 

 

Figure 5.9 Illustration of how the shear force and displacement is extracted from 

the FE results, with the beam elements and nodes numbered. 

 

5.2.1 Eigenmodes of a simply supported beam 

The beam corresponding to property set 1, called the original beam, is studied with a 

modal analysis in ADINA. This in order to find the mode shapes for the most 

important eigenmodes, i.e. the eigenmodes that contribute the most to the actual 

deflection shape of the beam. These mode shapes can be seen in Figure 5.10, where 

five eigenmodes are presented. The eigenfrequencies of these modes are presented in 

Table 5.3. In the figure and table are some mode numbers missing, because they 

correspond to deflections that do not take place in the two dimensional x-y plane. 

These eigenmodes exist because three dimensional elements are used, but they are not 

of interest here. 

Table 5.3 The five most important eigenmodes and their corresponding 

eigenfrequency for the original beam, property set 1. 

Mode number 
Eigenfrequency 

fb [Hz] 

Theoretical Eigenfrequency 

fnatural [Hz] 

1 10.00 10.09 

2 39.83 40.36 

5 88.98 90.81 

8 156.60 161.44 

11 241.70 252.25 
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Figure 5.10 The mode shapes corresponding to the five most important eigenmodes 

of the studied beam. 

From Figure 5.10 it can be seen that the first mode shape has a simple shape 

consisting of one curved line, while the higher mode shape numbers have more local 

extrema along the beam. It can also be seen that loading at different positions on the 

beam would give deflection shapes that trigger different mode shapes. Eigenmodes of 

higher number are more important when the load is applied closer to the support, 

compared to loading at midspan. This will be discussed more in the following 

sections. 

 

5.2.2 Original beam - Property set 1 

The first study is with a beam and spring of property set 1, as described in Table 5.2. 

The results presented in Figure 5.11 shows the shape of the response at the time when 

the maximum value is reached for each load case. As expected, the maximum moment 

increases as the impact position moves closer to the middle of the beam, and in the 

opposite way the shear force increases for impacts closer to the support. The 

deflection is largest close to the midspan regardless of where the impact occurs. In 

Figure 5.12 it can be seen that both the moment at the impact node and the support 

reaction force RA occurs at almost the same time regardless of where on the beam the 

impact is. It is also visible that the second bump on the curve becomes less 

pronounced when the impact is close to the support. This is probably due to that in 

addition to the first most dominant eigenmode some additional eigenmodes becomes 

more important close to the support. 
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Figure 5.11 Maximum moment M, shear force V and displacement u over the length 

of the original beam for different impact positions, at the time when the 

maximum response is reached for each load case. 
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Figure 5.12 Moment at impact node with regard to time and support reaction force 

RA with regard to time for different impact positions. 

It can also be of interest to study how the reactions along the beam increases with 

time, this is essentially what leads up to the graphs in Figure 5.11 and can be seen in 

Figure 5.13 for α = 0.1. Here it can be seen how the shape of the moment curve 

changes with time. Early during the impact, the moment is even negative at the 

opposite half of the beam to where the load is applied. The shape then changes as the 

moment grows and becomes more curved in the positive direction. But when the 

maximum moment is reached, the shape has gone back to consist of almost straight 

lines, similar to the shape of a static response. The shear force, on the other hand, 

grows larger with time without changing its shape very much. One interesting 

observation is that the shear force at the opposite support stays very close to zero 

during the first half of the studied time interval, while it grows constantly at the 

support closest to the load. When looking at the displacement curve it may be 

observed that the maximum displacement occurs at different positions at different 

times. At first the maximum is close to the point of loading, but with time it moves 

closer and closer to the midspan. 
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Figure 5.13 Moment M, shear force V and displacement u over the length of the 

original beam at different times during the impact up to when the 

maximum response is reached, when loading at α = 0.1. 
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5.2.3 Effect of beam stiffness 

 Stiffer beam – Property set 5 5.2.3.1

For property set 5, see Table 5.2, the maximum moment M, shear force V and 

deflection u along the beam shows almost identical behaviour to property set 1, see 

Figure 5.11, with only small differences in magnitude. These results are therefore only 

shown in Appendix E. The moment and reaction force over time, seen in Figure 5.14, 

is however displaying a different behaviour showing three bumps. This is due to that 

the stiffness of the beam is so large that the eigenfrequency has a much shorter period 

time than the duration of the impact. Again, these smaller bumps become less 

pronounced closer to the support due to additional eigenmodes coming into play. 

 

 

 

Figure 5.14 Moment M at impact node with regard to time and support reaction 

force RA with regard to time for different impact positions. 
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 Softer beam – Property set 4 5.2.3.2

The bending stiffness is now made four times smaller compared to the original beam, 

see Table 5.2. One interesting thing about this case, shown in Figure 5.15, is that the 

increase in shear force does not show the step like behaviour seen in other cases when 

the impact moves closer to the support. Instead the increase in shear force between 

α = 0.3 and α = 0.1 is more or less negligible. This phenomenon occurs when the 

beam has a relatively low stiffness compared to the stiffness of the impacting object. 

One reason for this to happen may be that some additional eigenmodes becomes more 

dominant close to the support, thereby influencing the result. These eigenmodes have 

higher natural frequencies and therefore the frequency ratio will decrease. 

It can also be seen from Figure 5.16 that when the impact is close to the support it 

reaches its maximum reaction force much faster compared to if the impact is at the 

midspan, 0.08 seconds compared to 0.12 seconds. This time difference is due to that 

the beam is so soft that it takes some extra time for the force wave in the beam to 

reach the support section. This is because the wave speed is changed when using the 

equivalent Young’s modulus EII to modify the bending stiffness EIb of the beam, see 

equation (5.6). 
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Figure 5.15 Maximum moment, shear force and deflection over the length of the soft 

beam for different impact positions, at the time when the maximum 

response is reached for each load case. 
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Figure 5.16 Moment at impact node with regard to time and support reaction force 

RA with regard to time for different impact positions. 

In Figure 5.17 it is presented how the moment and shear force along the beam 

increases with time, for impact at α = 0.3 and α = 0.1. For α = 0.3 the moment 

behaves in a similar way to the original beam, see section 5.2.2, except that the shape 

of the moment is more curved when the maximum response occurs. For α = 0.1 the 

moment curve behaves in a different way. In the beginning the moment grows in a 

similar way to the other cases. But this time the maximum moment occurs not directly 

under the point of impact, but closer to midspan. This behaviour is very different 

compared to the moment curve of a static response, and appears to occur when the 

frequency ratio f1 / f2 is large. The shear force for the two loading positions behaves in 

a similar way as the original beam. However the shape when loading at α = 0.3 is a lot 

more curved with a larger force at the supports. In the beginning of the impact though 

the shear force is largest at the point of impact. 
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α = 0.3 

 

 

α = 0.1 

 

 

Figure 5.17 Moment M and shear force V over the length of the soft beam at 

different times during the impact up to when the maximum response is 

reached, when loading at α = 0.3 and α = 0.1. 
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5.2.4 Effect of spring stiffness 

As mentioned for the 2DOF system in section 5.1.3 the behaviour of the response is 

identical when the spring stiffness is changed, compared to when the bending stiffness 

of the beam is changed, as long as the frequency ratio remains constant. The results 

for property sets 2 and 3, see Table 5.2, are therefore only presented in Appendix E. 

 

5.3 Comparison of model responses 

The collision responses for the 2DOF system and FE model presented in section 5.1 

and 5.2 are in this section compared. The incoming object has a velocity v0 of 20 m/s, 

the mass m1 is set to 1 000 kg and the stiffness k1 is set to 300 kN/m. The beam 

stiffness kb is based on the beam from section 4.1.2, which corresponds to property set 

1. 

Five different property sets are defined and analysed with both the 2DOF system and 

the FEM software, see Table 5.4. This table also shows the properties for different 

loading positions and what the frequency ratio is for each case. In property set 2 and 3 

the spring stiffness k1 is varied and in property set 4 and 5 the bending stiffness EIb 

and subsequently the beam stiffness kb is varied. The stiffnesses are changed with 

multiples of four, in order to change the eigenfrequencies by a factor two. 

In the following sections the comparisons for property set 1, 4 and 5 are presented, i.e. 

for the original beam and when the stiffness of the beam changes. The comparisons 

for the cases with changed stiffness of the colliding object , property sets 2 and 3, are 

here omitted because the responses are equal in both shape and relative size, see 

instead Appendix F. The reason for this is that the frequency ratio is exactly equal for 

the two cases; property set 2 is equal to property set 5 and property set 3 is equal to 

property set 4, see Table 5.4. 

The responses presented in this comparison are the displacements u1 and u2, the 

support reaction force RA, which is the maximum shear force, and the moment at the 

section where the load is applied Mα, all with regard to time. The support reaction 

force for the 2DOF system is calculated according to 







 2
2

2,

)(
R

l

llR
R DOFA  (5.7) 

where R2 is the force in the beam at the position of impact and β = 1−α. The moment 

is then calculated according to 

lRlRM DOFA   22,  (5.8) 

All of the results from the comparison can be seen in Appendix F. 
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Table 5.4 Input parameters for the different property sets and for three different 

loading positions. 

α 
Property 

set 

k1 

[kN/m] 

EIb 

[MNm
2
] 

kb 

[MN/m] 

m1 

[kg] 

m2 

[kg] 2

1

m

m
 

f1 

[Hz] 

f2 

[Hz] 2

1

f

f
 

0.5 

1 300 18.302 7.028 1 000 1 748.6 0.572 2.757 10.09 0.273 

2 75 18.302 7.028 1 000 1 748.6 0.572 1.378 10.09 0.137 

3 1 200 18.302 7.028 1 000 1 748.6 0.572 5.513 10.09 0.546 

4 300 4.576 1.757 1 000 1 748.6 0.572 2.757 5.045 0.546 

5 300 73.208 28.112 1 000 1 748.6 0.572 2.757 20.18 0.137 

0.3 

1 300 18.302 9.960 1 000 2 310.8 0.433 2.757 10.45 0.264 

2 75 18.302 9.960 1 000 2 310.8 0.433 1.378 10.45 0.132 

3 1 200 18.302 9.960 1 000 2 310.8 0.433 5.513 10.45 0.528 

4 300 4.576 2.490 1 000 2 310.8 0.433 2.757 5.225 0.528 

5 300 73.208 39.842 1 000 2 310.8 0.433 2.757 20.90 0.132 

0.1 

1 300 18.302 54.229 1 000 10 092 0.099 2.757 11.67 0.236 

2 75 18.302 54.229 1 000 10 092 0.099 1.378 11.67 0.118 

3 1 200 18.302 54.229 1 000 10 092 0.099 5.513 11.67 0.473 

4 300 4.576 13.557 1 000 10 092 0.099 2.757 5.833 0.473 

5 300 73.208 216.92 1 000 10 092 0.099 2.757 23.33 0.118 

 

5.3.1 Original beam - Property set 1 

The first comparison is made with the same beam as described in section 4.1.2. The 

results are presented in form of graphs for how the reaction force RA , moment Mα and 

displacements u1 and u2 for the two bodies during the impact. Three different 

positions of impact, from α = 0.5 to α = 0.1, are treated and described in this section. 
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a) u1, α = 0.5 b) u2, α = 0.5 

  

c) u1, α = 0.3 d) u2, α = 0.3 

  

e) u1, α = 0.1 f) u2, α = 0.1 

Figure 5.18 Comparison of response in displacement u1 and u2 over time between 

2DOF and FEM, for three different positions of loading and with 

property set 1. 
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a) RA, α = 0.5 b) Mα, α = 0.5 

  

c) RA, α = 0.3 d) Mα, α = 0.3 

  

e) RA, α = 0.1 f) Mα, α = 0.1 

Figure 5.19 Comparison of response in support reaction force RA and moment Mα 

over time between 2DOF and FEM, for three different positions of 

loading and with property set 1. 
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From Figure 5.18 the conclusion can be made that the correlation for the displacement 

u1 is very good and no difference can be seen in any of the loading positions. This is 

also the case for all the other property sets, which is why this comparison is left out in 

the following sections. The reason for this is probably that the incoming object is 

modelled as a simple spring-mass system with the same stiffness k1 in both models. 

If instead u2 is analysed a difference between the models can be observed. The 

correlation is almost perfect when loading at midspan, while it gets worse when 

loading closer to the support. The difference is still small at α = 0.3 and the shape of 

the responses is almost equal. At α = 0.1, though, the difference is larger and the 

shape of the curves differ quite a lot. The 2DOF response has a noticeable increase in 

displacement at the second impact while the FEM response shows only a small saddle 

point. The maximum displacement for u2 is on the other hand quite similar in both 

models, with a slightly larger value from the FE model response. Hence, the 2DOF is 

able to predict the maximum displacement rather well 

In Figure 5.19 the support reaction force RA and moment Mα is compared, and the 

difference are here more evident; again more so when the load is applied closer to the 

support. For the support reaction force RA the response is slightly higher for the FE 

model when loading at midspan, while it is the other way around when loading at 

α = 0.3. When α = 0.1 the reaction force is noticeable larger for the 2DOF model, 

while the shape of the graphs is clearly different. Neither does the FE model have a 

noticeable second bump on the curve here, which it does when the load is applied at 

midspan. The 2DOF system shows a similar behaviour in all three cases with a second 

bump after approximately 0.15 seconds. 

The moment diagrams show a similar behaviour as the reaction force, but here the 

response from the 2DOF model is always larger. It can also be noted that for α = 0.1 

the shape of the response from the FE analysis regarding moment and support reaction 

force is almost identical with the values for the reaction force being roughly twice as 

large compared to the moment. 

One conclusion from these comparisons is that the correlation between 2DOF and 

FEM always gets worse when moving closer to the support, i.e. making α smaller. 

This probably has to do with that other eigenmodes than the first one have a large 

impact when loading close to the support. For the case when loading at midspan the 

first eigenmode is the most significant one. The 2DOF system created can on the other 

hand only simulate the first eigenmode of the beam. 

Another way of presenting the comparison between the 2DOF system and FE model 

is to create envelopes of the moment and shear force curves along the beam. This is 

done by superimposing the maximum responses for five different positions of loading. 

For the FE response this can be explained as superimposing the curves from  

Figure 5.11. The envelopes are mirrored to be valid for impacts on both sides of the 

midspan. The comparison of the envelopes can be seen in Figure 5.20. As seen 

previously in this section, the 2DOF system response is on the safe side for the whole 

length of the beam. 
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Figure 5.20 Comparision of the envelopes for the Moment M and shear force V over 

the length of the beam, between the 2DOF and FE responses. 
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5.3.2 Effect of beam stiffness 

The beam stiffness is now made one fourth as stiff and four times as stiff compared to 

the original beam, to study the outcome of varying stiffnesses, see Table 5.4. 

 

 Stiffer beam – Property set 5 5.3.2.1

The correlation in displacement u2 for the stiffer beam is about the same as for the 

original beam, see Figure 5.21. The correlation is again very good when loading at 

midspan and it gets worse when loading closer to the support. As for the original 

beam the FE model displays the highest values in all loading positions, but the 

difference is small. The shape also for this case differs more when loading closer to 

the support, where the FE model loses some of the peaks which was visible closer to 

midspan, while the 2DOF model virtually preserves its shape regardless of loading 

position. 

  

a) u2, α = 0.5 b) u2, α = 0.3 

 

 

c) u2, α = 0.1  

Figure 5.21 Comparison of response in displacement u2 over time between 2DOF 

and FEM, for three different positions of loading and with 

property set 5 
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The correlation of reaction forces and moments have the same behaviour as for the 

original beam, with a much smaller difference in response compared to the weak 

beam, see Figure 5.22. At α = 0.3 the correlation is still very good, as was the case 

with the original beam. For α = 0.1 the difference is larger but still relatively small, 

and thus, fully acceptable. 

  

a) RA, α = 0.5 b) Mα, α = 0.5 

  

c) RA, α = 0.3 d) Mα, α = 0.3 

  

e) RA, α = 0.1 f) Mα, α = 0.1 

Figure 5.22 Comparison of response in support reaction force RA and moment Mα 

over time between 2DOF and FEM, for three different positions of 

loading and with property set 5. 
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The comparison of the envelopes for moment and shear force between the 2DOF 

system and the FE model can be seen in Figure 5.23. Also this time the 2DOF system 

response is on the safe side for the whole length of the beam, but the difference is 

small. 

 

 

Figure 5.23 Comparision of the envelopes for the Moment M and shear force V over 

the length of the stiffer beam, between the 2DOF and FE responses. 
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 Softer beam – Property set 4 5.3.2.2

The correlation in displacement u2 is for the softer beam a little bit worse than for the 

original beam, compare Figure 5.24 and Figure 5.18. For loading at midspan the 

correlation is still very good but it gets worse when loading closer to the support. This 

time the 2DOF model displays the highest values in all loading positions, in contrast 

to the original beam. 

  

a) u2, α = 0.5 b) u2, α = 0.3 

 

 

c) u2, α = 0.1  

Figure 5.24 Comparison of response in displacement u2 over time between 2DOF 

and FEM, for three different positions of loading and with 

property set 4. 
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original beam, with higher differences closer to the support, see Figure 5.25. 

However, this time the differences is a lot larger than before, as the 2DOF system 

overestimates the response by over 50 percent compared to the FE analysis, when 
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a) RA, α = 0.5 b) Mα, α = 0.5 

  

c) RA, α = 0.3 d) Mα, α = 0.3 

  

e) RA, α = 0.1 f) Mα, α = 0.1 

Figure 5.25 Comparison of response in support reaction force RA and moment Mα 

over time between 2DOF and FEM, for three different positions of 

loading and with property set 4. 
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The comparison of the envelopes for moment and shear force between the 2DOF 

system and the FE model can be seen in Figure 5.26. Also this time the 2DOF system 

response is on the safe side for the whole length of the beam, and the overestimation 

is significant. 

 

 

Figure 5.26 Comparison of the envelopes for the Moment M and shear force V over 

the length of the soft beam, between the 2DOF and FE responses. 
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moment could also be of importance, but it does not in general lead to a beam failure 

because of yielding and plastic redistribution. 

 

5.3.4 Comparison of support reaction forces 

To study the shear force the support reaction force RA is investigated, since it is in 

general equal to the maximum shear force in a beam. The correlation between the 

2DOF and FE models are studied by using the ratio of the reaction forces 

RA,2DOF / RA,FEM. In Table 5.5 this ratio is presented together with the frequency ratio 

f1 / f2, for all of the loading positions and for even more property sets than presented 

before. To clearly be able to see how the correlation of reaction forces depends on the 

frequency ratio, these values are also plotted in Figure 5.27 and Figure 5.28. If the 

original beam corresponded to a vehicle colliding with a barrier, one could think of 

the highest frequency ratios as a rigid steel projectile colliding with a barrier, rather 

than a vehicle colliding with an unreasonably soft barrier. 

In Figure 5.27 it can be seen once again that the correlation is best when loading at 

α = 0.3. When loading at midspan, α = 0.5, the 2DOF system underestimates the 

response, meaning it is not on the safe side. This could still be acceptable since the 

moment utilizes plastic redistribution and the shear force is considerably larger when 

the load is applied close to the support. When α = 0.1 the largest differences in 

reaction force can be seen and here the 2DOF system overestimates the shear forces. 

What is positive about this is that using the 2DOF system is on the safe side and the 

response when loading close to the support is likely the governing one in a design 

process, i.e. the largest one. The downside is that using the 2DOF system could result 

in very oversized structures, which is not sustainable from an environmental and 

economic viewpoint. 

The trend in Figure 5.27 shows a decreasing correlation when the frequency ratio 

increases. After further studies, it was found out that this is not really true when the 

frequency ratio has a higher value than 1, see Figure 5.28. From this it can be seen 

that the ratio of the reaction forces starts to decrease for higher values of the 

frequency ratio. This results in a better correlation at first, but subsequently leads to 

that the 2DOF model underestimates the response for all loading positions, making it 

not safe to use anymore. For the case when α = 0.1 the 2DOF model will not be safe 

to use anymore when the frequency ratio exceeds 2.5. When the frequency ratio 

exceeds a value of approximately 3.5 for the same loading position the ratio of the 

reaction force is even lower than for the case when α = 0.3. This occurrence could be 

interesting to study further to see what happens to the force ratio at even higher 

frequency ratios than 4.5, because it looks like it could decrease even more. 
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Table 5.5 Input parameters and reaction forces for the different property sets and 

for three different loading positions. 

α 
Property 

set 

Max of 

RA,2DOF 

[kN] 

Max of 

RA,FEM 

[kN] 
FEMA

DOFA

R

R

,

2,
 

k1 

[kN/m] 

EIb 

[MNm
2
] 

kb 

[MN/m] 

f1 

[Hz] 

f2 

[Hz] 2

1

f

f
 

0.5 

1 221.0 238.5 0.927 300 18.302 7.028 2.757 10.09 0.273 

4 263.5 304.6 0.865 300 4.576 1.757 2.757 5.045 0.546 

5 198.6 207.3 0.958 300 73.208 28.112 2.757 20.18 0.137 

6 191.2 250.6 0.763 300 1.144 0.439 2.757 2.523 1.093 

7 185.5 189.5 0.979 300 292.83 112.45 2.757 40.36 0.068 

8 254.3 285.9 0.890 300 9.151 3.514 2.757 7.135 0.386 

9 192.3 201.3 0.955 300 36.604 14.056 2.757 14.27 0.193 

10 240.3 293.4 0.819 300 2.288 0.879 2.757 3.567 0.773 

11 99.89 152.3 0.656 300 0.286 0.110 2.757 1.262 2.186 

12 90.55 140.7 0.644 300 0.071 0.028 2.757 0.630 4.371 

0.3 

1 307.0 293.5 1.046 300 18.302 9.960 2.757 10.45 0.264 

4 381.8 338.1 1.129 300 4.576 2.490 2.757 5.225 0.528 

5 276.1 271.9 1.015 300 73.208 39.842 2.757 20.90 0.132 

6 294.6 243.2 1.211 300 1.144 0.623 2.757 2.612 1.055 

7 259.3 256.7 1.010 300 292.83 159.37 2.757 41.79 0.066 

8 359.7 339.0 1.061 300 9.151 4.980 2.757 7.388 0.373 

9 273.8 259.0 1.057 300 36.604 19.921 2.757 14.78 0.187 

10 358.7 294.3 1.219 300 2.288 1.245 2.757 3.694 0.746 

11 203.0 229.4 0.885 300 0.286 0.156 2.757 1.306 2.111 

12 102.7 127.7 0.804 300 0.071 0.039 2.757 0.653 4.221 

0.1 

1 378.0 332.2 1.138 300 18.302 54.229 2.757 11.67 0.236 

4 522.3 334.0 1.564 300 4.576 13.557 2.757 5.833 0.473 

5 342.7 324.0 1.058 300 73.208 216.92 2.757 23.33 0.118 

6 478.6 281.7 1.699 300 1.144 3.389 2.757 2.917 0.945 

7 326.5 317.7 1.028 300 292.83 867.66 2.757 46.66 0.059 

8 462.5 353.8 1.307 300 9.151 27.114 2.757 8.249 0.334 

9 364.3 308.4 1.181 300 36.604 108.46 2.757 16.50 0.167 

10 531.6 313.9 1.694 300 2.288 6.779 2.757 4.125 0.668 

11 285.3 255.9 1.115 300 0.286 0.847 2.757 1.458 1.890 

12 148.2 205.6 0.721 300 0.071 0.212 2.757 0.729 3.781 

13 105.5 177 0.596 300 0.036 0.106 2.757 0.516 5.349 
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Figure 5.27 Illustration of how the ratio of the support reaction force RA for the 

2DOF and FE model varies with the frequency ratio of the two objects. 

 

 

Figure 5.28 Illustration of how the ratio of the support reaction force RA for the 

2DOF and FE model varies with the frequency ratio of the two objects. 

Same as Figure 5.27 but for higher values of the frequency ratio. 

It is now known how the ratio of the reaction force varies with the frequency ratio. It 

can also be of interest to see how the two reaction forces behave separately from each 

other, to understand why the ratio looks like it does. This is shown for the FE model 

in Figure 5.29 and for the 2DOF model in Figure 5.30. 
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Figure 5.29 Illustration of how the reaction force from the FE model RA,FEM varies 

with the frequency ratio of the two objects. 

 

 

Figure 5.30 Illustration of how the reaction force from the 2DOF model RA,2DOF 

varies with the frequency ratio of the two objects. 

In Figure 5.29 it is seen that the support reaction force RA,FEM has its largest value for 

all loading positions at a frequency ratio of about 0.5. In the region close to this 

frequency ratio the difference is also the smallest between the loading positions. The 

reaction force when loading at α = 0.1 is generally the largest one for all frequency 

ratios, which confirms that it can be the governing load case in a design process. 

The reaction force from the 2DOF system RA,2DOF also has its maximum for all 

loading positions at a frequency ratio of about 0.5. In opposite to the FE model, the 

difference in response between load cases is largest here, while the responses seem to 

come closer to each other when the frequency ratio increases. The behaviour of these 

lines virtually follows the behaviour of the load factor βel, which is plotted for two 

mass ratios, approximately corresponding to the three loading positions, in  

Figure 5.31. This is also expected since the load factor diagram is based on a 

2DOF model. 
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Figure 5.31 Illustration of how the load factor βel varies with the frequency ratio for 

two different mass ratios, corresponding to the different loading 

positions. 

From Figure 5.29 it can also be seen that the FE response has a slightly different 

appearance than the 2DOF response, and this gives the idea that a diagram for a load 

factor corresponding to the FE response could be created, similar to Figure 3.12. This 

can also be a topic of further studies. 

 

5.3.5 Comparison with calculation model from Biggs 

To try and find a more accurate approximation of the support reaction force RA, 

compared to FE analysis, that is on the safe side for frequency ratios above 2.0, the 

conventional calculation model according to Biggs (1964) is implemented. Here the 

support reaction force RA is calculated by 

   tRtRR BiggsA 1221,    (5.9) 

where R1(t) is the external load and R2(t) is the reaction force obtained from the 2DOF 

system. The two load factors γ1 and γ2 depend on the impact position on the beam and 

are for impact at midspan, α = 0.5, presented by Biggs (1964). The load factors used 

for other impact positions have previously been determined by Johansson (2014b) and 

are presented in Table 5.6. If the load factors are studied it can be seen that adding 

them together gives a value of β corresponding to each loading position in the table 

  21  (5.10) 

where, according to Figure 5.7 

 1  (5.11) 

See also equation (5.7) for similarities with equation (5.9) and both equations gives 

the same response when R1(t) = R2(t). 

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

L
o

ad
 f

ac
to

r 
β

el
 [

-]
 

Frequency ratio f1 / f2 [-] 

0.50

0.10



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:80 
103 

Table 5.6 Load factors used to determine support reaction force RA,Biggs by 

conventional method, values from Johansson (2014b). 

α γ1 γ2 

0.05 1.429 -0.479 

0.10 1.357 -0.457 

0.15 1.286 -0.436 

0.20 1.214 -0.414 

0.25 1.143 -0.393 

0.30 1.071 -0.371 

0.35 0.999 -0.349 

0.40 0.926 -0.326 

0.45 0.854 -0.304 

0.50 0.781 -0.281 

In the following analyses only impacts close to the support, α = 0.1, is studied since 

these are the most critical both with regard to shear force and the ability of the 2DOF 

system to represent an accurate structural response at this impact position. In order to 

study the response of the system for even higher frequency ratios than before an 

additional property set with a beam stiffness 512 times lower than the original beam 

(property set 1) is created giving a frequency ratio f1 / f2 of 5.35 see Table 5.7. 

Table 5.7 The property sets used with Biggs, only impacts at α=0.1 is tested. 

Property 

set 

Max of 

RA.FEM 

[kN] 

Max of 

RA.Biggs 

[kN] FEMA

BiggsA

R

R

.

.  
k1 

[kN/m] 

EIb 

[MNm
2
] 

kb 

[MN/m] 

f1 

[Hz] 

f2 

[Hz] 2

1

f

f
 

1 332.2 424.1 1.277 300 18.302 54.229 2.76 11.67 0.236 

8 353.8 540.9 1.529 300 9.151 27.114 2.76 8.25 0.334 

4 334.0 648.9 1.943 300 4.576 13.557 2.76 5.83 0.473 

10 313.9 767.2 2.444 300 2.288 6.779 2.76 4.13 0.668 

6 281.7 721.6 2.562 300 1.144 3.389 2.76 2.92 0.945 

11 256.6 430.1 1.676 300 0.286 0.847 2.76 1.46 1.891 

12 206.7 223.5 1.081 300 0.071 0.212 2.76 0.739 3.782 

13 177.0 159.0 0.898 300 0.0357 0.106 2.76 0.516 5.349 
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Figure 5.32 Illustration of how the utilization of the reaction force from the 2DOF 

model and Biggs, compared to the FE model, varies with the frequency 

ratio of the two objects. 

As seen in Figure 5.32 the correlation between Biggs and FEM is similar to the 2DOF 

model used before up to a frequency ratio of about 0.4, but as the reaction force ratio 

for 2DOF do not longer increase at a frequency ratio of about 0.7, the overestimation 

using Biggs still increases, reaching a maximum value of more than 2.5 for a 

frequency ratio of 0.95. It then starts to decrease but is on the safe side all the way up 

to a frequency ratio of around 4, and then appears to be converging at a utilization 

ratio of around 0.8. But further studies are needed to confirm that this is the case for 

even higher frequency ratios. 

In Figure 5.33a it is seen that both 2DOF and Biggs gives a reasonably good 

approximation of the maximum reaction force, but both shows double bumps that is 

not visible in the FE-analysis. From Figure 5.33b and Figure 5.33c it can be seen that 

the reaction force is overestimated but the shape of the curve shows the same 

sinusoidal behaviour. The behaviour in Figure 5.33b shows that the force becomes 

almost zero after the initial impact, a response that occurs in all three calculation 

models. Figure 5.33d shows that neither 2DOF nor Biggs gives a good approximation 

of the reaction force, instead both methods greatly overestimates it. The maximum 

value is also delayed by 0.1 seconds compared to the FE analysis. In Figure 5.33e is 

the 2DOF and Biggs responses again delayed, but this time the 2DOF gives a very 

good maximum value for the reaction force. In Figure 5.33f it can be seen that 2DOF 

now gives a smaller maximum value compared to the FE analysis, putting it on the 

unsafe side, while Biggs give a really good approximation of the maximum support 

reaction force RA. However both 2DOF and Biggs shows a much longer loading pulse 

that reaches its maximum 0.3 seconds later than the FE-analysis. Evidently neither 

method is able to represent the result in the FE analysis. 

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

R
A

/
R

A
,F

E
M

[-
]

f1 / f2 [-]

Biggs alpha = 0.1

2DOF alpha = 0.1

2DOF alpha = 0.3

2DOF alpha = 0.5



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:80 
105 

 

  

a) Property set 1 – original beam 

f1 / f2 = 0.236 

b) Property set 8 – kb / 2 

f1 / f2 = 0.334 

  

c) Property set 4 – kb / 4 

f1 / f2 = 0.473 

d) Property set 6 – kb / 16 

f1 / f2 = 0.945 

  

e) Property set 11 – kb / 64 

f1 / f2 = 1.891 

f) Property set 12 – kb / 256 

f1 / f2 = 3.782 

Figure 5.33 Curves comparing how the support reaction force RA changes over time 

for the different calculation models, when impact at α = 0.1. 
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One conclusion that can be drawn on the basis of this is that, for frequency ratios 

below 2.5, the 2DOF system produces the most accurate result and is on the safe side. 

For frequency ratios above 2.5, Biggs is still on the safe side up to a frequency ratio of 

about 4.5. For higher frequency ratios the utilization ratio seems to converge at a 

value around 0.8, meaning the reaction force is underestimated by 20 percent, but 

further studies are needed to be able to confirm whether this is really the case. 

It also needs to be clarified again that the beam stiffness EIb in the FE software is 

modified by changing the value of the Young’s modulus, instead of changing the 

moment of inertia. This implies that also the wave speed, dependent on Young’s 

modulus and the density, in the material is changed, see equation (5.6). This could be 

a reason why the response behaves so different when the beam is very soft and should 

be investigated further. 

When dealing with very soft beams one also needs to remember that damping is 

ignored in this project. The assumption to do so was valid for stiffer beams but one 

can argue that the importance of damping is larger when the beam is soft, i.e. for high 

frequency ratios. This could be because the response is much slower and the effect of 

damping would have time to make an impact. 

 

5.3.6 Deflection of weak beams 

As seen in Figure 5.33 the difference in time between 2DOF and FEM to reach the 

maximum support reaction force RA increases for the softer beams with the 2DOF 

system being much slower. Therefore further studies are performed to study the 

behaviour of the deflection as the stiffness of the beam k2 decreases. In this section, 

the deflection at the point of impact u2 is compared, this is however not the maximum 

deflection of the beam that instead will occur close to the midspan regardless of 

impact position as previously shown in Figure 5.13. The comparison presented in 

Figure 5.34 shows the deflection u2 over time when loading at α = 0.1. As seen in 

Figure 5.34a to Figure 5.34d the 2DOF system gives a good estimate of both the size 

of the maximum deflection and at which time it occurs. In Figure 5.34e and  

Figure 5.34f the FE analysis shows a double top with the second one being the larger. 

This is thought to be due to that the impact is so close to the support that the force 

wave, created from the impact, bounces back from the support with mirrored 

amplitude. This creates the local minimum that occurs before the absolute maximum 

is reached. This behaviour is not captured by the 2DOF system which shows a 

sinusoidal behaviour. The maximum from 2DOF is reached almost at the same time 

as the FE model has a local minimum but the overall period time seem to correlate 

well. 
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a) Property set 1 – original beam 

f1 / f2 = 0.236 

b) Property set 8 – kb / 2 

f1 / f2 = 0.334 

  

c) Property set 4 – kb / 4 

f1 / f2 = 0.473 

d) Property set 6 – kb / 16 

f1 / f2 = 0.945 

  

e) Property set 11 – kb / 64 

f1 / f2 = 1.891 

f) Property set 12 – kb / 256 

f1 / f2 = 3.782 

Figure 5.34 Comparison of how the deflection u2 changes over time at position 

α = 0.1 for different property sets. 
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To see if the phenomenon occurring in Figure 5.34e and Figure 5.34f continues 

throughout the beam the deflection is also examined at midspan for the same loading 

position, α = 0.1, see Figure 5.35. There it can be seen that the curve from the 

FE analysis becomes smoother and more stable, showing the same behaviour as the 

2DOF model. The maximum response is a little bit delayed in the FE analysis, which 

is probably due to that it takes some time for the midspan of the beam to react to the 

impact. This is more noticeable for the soft beams since the wave speed is lower, see 

equation (5.6). 

In opposite to the reaction force the deflection from 2DOF seems to always be on the 

safe side. This suggests that the reason for the decreasing reaction force for softer 

beams has something to do with how the reaction force is obtained from the deflection 

by using the equivalent static load. 

  

a) Property set 11 – kb / 64 

f1 / f2 = 1.891 

b) Property set 12 – kb / 256 

f1 / f2 = 3.782 

Figure 5.35 Comparison of how the deflection at midspan umid changes over time for 

α = 0.1 for property sets 11 and 12. 

 

5.3.7 Comparison of response assuming characteristic impulse 

For collisions with high frequency ratios, the beam is much softer than the colliding 

object. This implies that almost all deformation takes place in the beam and that the 

duration of the impact is short compared to the period Tb of the beam. With this in 

mind, it is assumed that the impulse in such cases can be seen as a characteristic 

impulse, with an infinitely short duration. In Figure 5.36 it can be seen how the 

duration of the impulse decrease when the frequency ratio increases. This is made by 

changing the stiffness of the colliding object rather than stiffness of the beam, to make 

the difference easy to compare. The three highest frequency ratios appear to have an 

impulse that is short enough to be seen as characteristic, see also Figure 5.37. The 

same reasoning will be valid when changing the stiffness of the beam instead, but in 

this case the duration of the impact will remain almost constant while the period of the 

beam Tb increases. This concludes that the governing factor, for when it is reasonable 

to assume a characteristic impulse, will be the relationship between the duration of 

impact and the period of the beam. 
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Figure 5.36 Illustration of the shape of the impulse for five different frequency 

ratios. 

Whether this is true or not is investigated in this section by studying the reaction force 

from a characteristic impulse. 

First, the deflection of the beam subjected to a characteristic impulse is written, 

according to section 2.3.2.2, as 

b

cc
el

km

I

m

I
u







222

,2


 (5.12) 

where the characteristic impulse is defined as 

012 vmIc   (5.13) 

when the response is elastic. The reaction force can, by utilizing equation (3.2) and 

(5.7) together with (5.12), be written as 

 elbcharA ukR ,2,  (5.14) 

This reaction force is now calculated for the property sets with highest frequency 

ratios, and the result is plotted together with the 2DOF and Biggs results in  

Figure 5.37. It can be seen that the characteristic impulse gives values that lies 

somewhere in between the 2DOF and Biggs response when the frequency ratio f1 / f2 

is above 1.0. This is quite good results if you consider the simple formula for 

obtaining them, where only the masses, beam stiffness and initial velocity needs to be 

known. This formula can be used for rough estimates where the reaction force or 

displacement needs to be estimated with a simple method. 
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Figure 5.37 Illustration of how the ratio of the support reaction force RA / RA,FEM 

when assuming a characteristic impulse varies with the frequency ratio, 

in comparison to the 2DOF and Biggs responses. Loading at α = 0.1. 
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5.4 Design example with a bilinear stiffness relationship 

5.4.1 Orientation 

In this section an example of an analysis is carried out and the aim is to come as close 

to a real life design problem as possible. The problem consists of analysing a column 

which is subjected to a collision impact from a moving vehicle, see Figure 5.38. The 

column is represented by the same elastic beam as was used in previous sections, for a 

detailed description see section 4.1.2. In order to better capture the real behaviour of a 

vehicle impact, as described in section 4.1.1, a bilinear load-displacement relationship 

for the spring representing the vehicle is utilized and the material response is fully 

plastic, meaning that the displacement remains constant at unloading. A fully plastic 

vehicle response is also what is assumed in Eurocode, with which a comparison will 

be conducted. Only the 2DOF model is used for analysis in this section because in 

ADINA it is not possible to use a plastic response for spring elements. 

The analysis is carried out with, in addition to the one described above, five more 

load-displacement relationships for the vehicle in order to study the difference in 

response and determine if a simplified relationship can produce acceptable results, see 

Figure 5.38. The second relationship exhibits an elastic behaviour instead of plastic, 

the third and fifth relationship exhibits a linear plastic curve and the fourth and sixth a 

linear elastic curve.  
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Figure 5.38 Illustration of the vehicle colliding with a beam representing a column 

and the six different load-displacement relationships for the vehicle 

studied in this example. The dashed line represents the unloading path. 

The properties of both the beam and the vehicle are presented in Table 5.8. The 

stiffness k1,1 is set to 300 kN/m in accordance with Eurocode, k1,2 is four times greater, 

1 200 kN/m and the change in stiffness is assumed to happen when the deformation of 

k1,1 has reached 0.5 m, which is a reasonable assumption according to Figure 4.10. 
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The loading position is chosen to be at α = 0.1, also in accordance with Eurocode. The 

stiffness of the beam kb and the transformation factor κm,el is calculated according to 

the method presented in section 0 where the transformation to a 2DOF system is 

described. The mass m1 is specified as 1 500 kg for cars in Eurocode, and the 

velocity v0 is stated as 25 m/s for motorways, so these values are chosen for the study. 

According to Eurocode the force should be applied as a distributed load with a height 

of 0.25 m. This small distribution, γ = 0.05, can according to section 0 be regarded as 

a point load. 

Due to the relatively low frequency ratio in this example the 2DOF system will, 

according to Figure 5.27, produce a result that is a good estimate of the FE response. 

Therefore the 2DOF system can, in this case, be seen as a good reference and 

representation of reality. 

Table 5.8 Properties of the beam and the vehicle for use in the 2DOF model, see 

section 5.1 for explanation of variables. 

Beam 

lb 5 m 

mb 3 600 kg 

EIb = Ec∙III 18.302 MNm
2 

α 0.1 

kb 54.23 MN/m 

κm,el 2.803 

m2 10 092 kg 

fb 11.67 Hz 

Vehicle 

m1 1 500 kg 

v0 25 m/s 

k1,1 300 kN/m 

k1,2 1 200 kN/m 

ubi 0.5 m 

f1,1 2.251 Hz 

f1,2 4.502 Hz 

Ratios 

f1,1 / fb 0.193 

f1,2 / fb 0.386 

m1 / m2 0.149 
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5.4.2 Results using the 2DOF system 

The results from the 2DOF system using the different load–displacement relationships 

are presented and compared with each other in the following sections. Only the forces 

are shown since it is the most important parameter and the displacement u2 follows 

the same response as the force R2. 

 

 Bilinear plastic behaviour – Material response 1 5.4.2.1

  

a) b) 

Figure 5.39 Force – Displacement curve and Force – Time curve using material 

response 1. 

In Figure 5.39a the force R1 is plotted against the deformation ∆u and R2 is plotted 

against u2. It can clearly be seen by the shape of R1 that the vehicle has a plastic 

material response with a bilinear stiffness. The beam is fully elastic and much stiffer 

than the vehicle which is confirmed by the shape of R2. In Figure 5.39b it can be seen 

that the impulse from R1 is cut off after reaching the maximum force value and this is 

when the impact is over. The velocity is at that time zero and the vehicle will change 

direction. This behaviour is typical for plastic material responses. The maximum force 

in the beam, seen in both Figure 5.39a and Figure 5.39b, is R2 = 1 504 kN. 
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 Bilinear elastic behaviour – Material response 2 5.4.2.2

  

a) b) 

Figure 5.40 Force – Displacement curve and Force – Time curve using material 

response 2. 

The material response of the vehicle is now fully elastic, which is seen in  

Figure 5.40a. The load R1 now follows the same path both at loading and unloading, 

in the same way as the load in the beam R2. Because of this the impulse is twice as 

large compared to Figure 5.39b, the maximum force in the second body is on the other 

hand not much larger than before, reaching a value of R2 = 1 536 kN. 
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 Linear plastic behaviour – Material response 3 and 5 5.4.2.3

  

a) b) 

Figure 5.41 Force – Displacement curve and Force – Time curve using material 

response 3, stiffness k1,1 = 300 kN/m. 

The material response of the vehicle is now linearly plastic using the lower stiffness 

k1,1. Compared to the bilinear case the deformation ∆u is much larger and the forces 

are lower, see Figure 5.41. However the work done by the vehicle, equal to the area 

under R1, is about the same as before. The maximum force in the second body now 

reaches a value of R2 = 554.5 kN. 

  

a) b) 

Figure 5.42 Force – Displacement curve and Force – Time curve using material 

response 5, stiffness k1,2 = 1 200 kN/m. 

The material response of the vehicle is again linearly plastic but using the higher 

stiffness k1,2. Compared to the bilinear case the deformation ∆u is now smaller but the 

forces are a little bit larger, see Figure 5.42. The maximum force in the second body 

now reaches a value of R2 = 1 629 kN, which is a good approximation of the response 

in the bilinear case. 
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 Linear elastic behaviour – Material response 4 and 6 5.4.2.4

  

a) b) 

Figure 5.43 Force – Displacement curve and Force – Time curve using material 

response 4, stiffness k1,1 = 300 kN/m. 

  

a) b) 

Figure 5.44 Force – Displacement curve and Force – Time curve using material 

response 6, stiffness k1,2 = 1 200 kN/m. 

The material response is now linearly elastic. The results for both forces are almost 

the same compared to the plastic case, with slightly higher values due to the larger 

impulse. The maximum force in the second body is for the lower stiffness 

R2 = 588.7 kN and for the higher stiffness R2 = 1 661 kN. 
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 Comparison between material responses 5.4.2.5

In Figure 5.45 the force in the beam R2 is compared for the bilinear and linear material 

responses for both the elastic and plastic cases. The case with linear response and 

lower stiffness is omitted because of the lower force level.  

 

Figure 5.45 Force – Time curve for comparison between the different material 

responses. 

For the elastic responses the maximum force R2 is slightly larger, due to the double 

size of the impulse. However, for the plastic cases it can be seen that the amplitude of 

R2 is larger after the initial impact compared to the elastic cases, i.e. at t > 0.1 seconds. 

This is due to that for the elastic case the force on the beam R1 is still acting when the 

beam is moving in the negative direction, while for the plastic case the force on the 

beam R1 stops acting when the vehicle changes direction. The difference in force 

between the different plastic and elastic material responses are presented in Table 5.9. 

Table 5.9 Comparison between the different load – displacement relationships. 

Material response 

Plastic unloading Elastic unloading 

,pl

,el 

R

R

2

2
 R2,pl 

[kN] 
12

2

,pl,

,pl 

R

R
 

R2,el 

[kN] 
12

2

,pl,

,el 

R

R
 

Bilinear loading, 

response 1 and 2 
1 504 1.000 1 536 1.021 1.021 

Linear loading k1,1, 

response 3 and 4 
554.5 0.369 588.7 0.391 1.062 

Linear loading k1,2, 

response 5 and 6 
1 629 1.083 1 661 1.104 1.020 

As seen in Table 5.9 the ratio between elastic and plastic unloading is close to one, 

1.021 when using the bilinear loading curve and 1.062 and 1.020 for the linear loading 

curves. It is also seen that the resulting load when using the bilinear curve is almost 

three times as large compared to when the linear curve with the lower stiffness k1,1 is 

used. If instead the higher stiffness k1,2 is used the resulting load in the beam is 

slightly overestimated compared to the bilinear curve, with about 8 percent for the 

plastic case and 10 percent for the elastic case. 

This implies that, for the parameters used in this example, the linear response with 

high stiffness can be used for the vehicle to estimate the real behaviour of the collision 

impact. This is also on the safe side for both elastic and plastic material response. 
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5.4.3 Eurocode 

The resulting force on the structure is calculated according to Eurocode 1-7, as 

described in section 4.3. Specifically it is in annex C, “Dynamic design for impact”, 

that the design process is described. 

The impact position for cars is given as 0.5 m above the ground in Eurocode, which is 

the same value as α∙lb used for the 2DOF analysis. All other input values used are as 

given in Table 5.8. 

The theory of hard impact given in Eurocode is used in this study because it states that 

the vehicle deforms more than the barrier. More precise it assumes a rigid barrier and 

a vehicle that deforms linearly, hence Eurocode neglects any bilinearity in the vehicle 

response. The code then states an expression for the maximum resulting dynamic 

interaction force F, which is given in equation (5.15) 

11 mkvF r   (5.15) 

where vr is the object velocity at impact. This is the same expression as the dynamic 

load for a hard impact, derived in section 3.2.1. 

If now the current values are inserted into equation (5.15), the response becomes 

kN 33.53015001030025 3 F  (5.16) 

This is the maximum dynamic force value that is acting on the outer surface of the 

structure, corresponding to R1 in the 2DOF system. Eurocode then states that this 

value needs to be multiplied with an amplification factor φdyn to account for dynamic 

effects inside the structure, thus giving a force corresponding to R2. It is not explicitly 

explained how the amplification factor should be calculated, only that a direct 

dynamic analysis is recommended to use. In fact the amplification factor corresponds 

well to the load factor βel described in section 3.2.1, even though it is derived for 

elastic response instead of plastic. Using this load factor would increase the maximum 

force with about 10 percent in this case, see Figure 3.12. The force in the beam R2 

then becomes 

kN 36.58333.5301.12  FR el  (5.17) 

which is a good approximation of the linear plastic response obtained in 

section 5.4.2.3. Because of the great importance of the secondary stiffness k1,2, seen in 

the previous section, it is now natural to instead use that stiffness in equation (5.15) to 

find a better correlation with the bilinear 2DOF model. By doing so and also 

multiplying with the corresponding load factor the force in the structure will get a 

better value 

kN 3.166515001012002557.1 3

2 R  (5.18) 

The force is now a lot bigger compared to when using recommended values and it is 

even on the safe side of the bilinear 2DOF response. It can also be noted that the force 

is now really close to the 2DOF system when linear response with high stiffness is 

used, see Table 5.9. 
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5.4.4 Observations 

The different material behaviours of the vehicle proved to give quite big differences in 

response with the stiffer part of the load-displacement curve to be governing. This is 

really interesting since, as mentioned before, Eurocode only assumes a linear material 

relationship with a relatively low stiffness. This leads to that the maximum force R2 

obtained according to Eurocode is only about 40 percent of the maximum force 

obtained from the 2DOF model using a bilinear material response. This proves that it 

sometimes can be dangerous to trust the values and formulas in Eurocode without 

having the proper background knowledge. It should also be mentioned that the 

stiffness values used for the bilinear material response in this example is much lower, 

about one third, compared to what was discovered in section 4.1.1, see Figure 4.10. 

One would think that a better result would be obtained by using the higher secondary 

stiffness in the formula from Eurocode. Of course, this is also the case and the 

response, after multiplying with the load factor, becomes slightly higher compared to 

the bilinear plastic 2DOF system, meaning it is on the safe side. 

Another conclusion from this example is how important the second stiffness is, 

especially when the velocity of the vehicle is high. On the other hand, for low 

velocities resulting in deformations below or close to the point of stiffness change, the 

first stiffness will be dominant. 

It should also be pointed out that although the effect of plastic material response 

proved to be small in this example, the effect is believed to become much larger for 

collision impacts with a high frequency ratio. For these cases the response of the 

second body will be much slower than the response of the first. Thereby the entire 

impulse will be transferred before the second body reaches its maximum deflection, 

thus will the difference in size of impulse between elastic and plastic response make 

more difference. 

 

5.4.5 Comparison 

It can be interesting to investigate the correlation between Eurocode and the 

2DOF model for different velocities when using the higher secondary stiffness 

value k1,2. The load factor βel used in the Eurocode calculation is again obtained from 

the diagram in Figure 3.12, and the values are presented in Table 5.10. Figure 5.46 

shows a magnified version of the graph from Figure 3.12 with the coordinates marked 

by a cross. Eurocode also provides structural parameters for heavy vehicles and they 

are therefore included in this comparison. The same stiffness values should be used 

for all types of vehicles according to Eurocode, therefore the stiffness k1,2 is used for 

both types of vehicle. 

Table 5.10 Properties used for obtaining the load factor βel in the example. 

Vehicle 
m1 

[kg] 

k1,2 

[kN/m] 

f1,2 

[Hz] 
2

1

m

m
 

bf

f 2,1
 

βel 

[-] 

Car 1 500 1 200 4.502 0.149 0.386 1.57 

Heavy vehicle 30 000 1 200 1.007 2.973 0.086 1.08 
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Figure 5.46 Load factor diagram with coordinates used in the example. 

The comparison for different velocities can be seen in Figure 5.47 for the two types of 

vehicle. The correlation between Eurocode and the 2DOF model is acceptable for the 

case with the car, as long as the initial velocity is not too low. This is due to that the 

bilinear material response is used in the 2DOF system and the secondary stiffness k1,2 

will not influence the response at initial velocities under about 8 m/s, see Figure 5.47. 

At such low initial velocities Eurocode will overestimate the response with up to 

170 percent. In these cases it would be wiser to use the lower stiffness k1,1 in the 

Eurocode calculation. When the heavy vehicle is studied the correlation is very good. 

The bilinear response is still used for the vehicle but since the mass is very large the 

secondary stiffness is reached at a much lower velocity, about 1.6 m/s. This velocity 

can be obtained by using equation (5.19) 

1

1,1

0
m

k
uv bi  (5.19) 

It should be noted that the stiffness still changes at the same force level and 

deformation as before, see Figure 5.39a. 

  

a) Car b) Heavy vehicle 

Figure 5.47 Comparison of resulting force in the beam between Eurocode and 

bilinear 2DOF for different initial velocities. 
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From this example it can be concluded that the method provided in Eurocode can be a 

good estimation in a design process, as long as the correct value of the vehicle 

stiffness and load factor is used. The method seems to always be on the safe side 

because it assumes a hard impact. It should though be noted that the results may not 

really be accurate for the highest velocities presented, due to the unknown response of 

the vehicles at such large corresponding deformations. This is especially important for 

the heavy vehicle where the deformation will be larger at the same velocity. 

A suggestion for Eurocode would be to use a stiffness which depends on the initial 

velocity and mass of the colliding vehicle. This would give a response that was closer 

to the bilinear 2DOF response at different initial velocities. This would not be too 

complicated to introduce if only the properties of the bilinear material response is 

fully known. More detailed studies of the load-displacement relationship in vehicles 

during collision impact needs to be conducted. This needs to be made also for 

different initial velocities to determine if the bilinear material response is dependent 

on the velocity as well. 
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6 Final Remarks 

The objective of this Master’s thesis has been to investigate a collision impact and the 

resulting responses using both simplified and more advanced design approaches. The 

different methods, including a two degree of freedom (2DOF) system and a finite 

element (FE) model, have also been compared. This is made in order to see how well 

the simplified methods are able to describe the behaviour of a collision impact against 

a simply supported beam with elastic response. 

 

6.1 Conclusions 

The overall behaviour of an impact is not dependent on the individual properties of 

the involved objects but rather on the relationship between the properties. Therefore, a 

convenient parameter to use as a base in linear elastic analyses is the ratio of the 

eigenfrequencies of the two objects, which depends on the mass and stiffness of both 

objects. 

For a 2DOF system the load factor βel is a very convenient tool for obtaining the 

resisting force in the second body from the dynamic load of an hard impact. A good 

way of presenting the load factor is to plot it as a function of the frequency ratio and 

for different values of the mass ratio. 

The response in a beam during a collision can be very different from when a static 

load is applied at the same position. This is more pronounced for collisions with high 

frequency ratios where, for example, the maximum moment might occur at a different 

section than at the point of impact. 

For a collision on a simply supported beam, the correlation between the shear force 

from the 2DOF system and FE analysis greatly depends on the frequency ratio. The 

correlation is also different depending on the impact position. It is best when the 

frequency ratio is close to zero and around two. Between these values the 2DOF 

response is on the safe side for impacts close to the support, but the maximum shear 

force might be greatly overestimated. For frequency ratios above 2.5 the 2DOF 

system produces results that are on the unsafe side compared to the FE analysis. When 

using the conventional model, also referred to as Biggs model, to calculate the 

maximum shear force the results are larger compared to the 2DOF system for all 

frequency ratios. This implies that the Biggs response produces better results for high 

frequency ratios, although it will be unsafe as well if the ratio is high enough. 

In opposite to the shear force, the maximum deflection of a beam obtained from the 

2DOF model always has a good correlation with the FE analysis. It is also on the safe 

side for all frequency ratios treated in this thesis. This suggests that using the 

equivalent static load for obtaining the sectional forces may not be valid for high 

frequency ratios. 

The load-displacement relationship for cars during a collision seems to have a bilinear 

response with a considerable stiffness increase after a certain deformation. Even 

though the overall behaviour obtained from crash tests are similar, it should be noted 

that there are some variation in the results depending on the model of the car and test 

method used. The material response of the colliding vehicle was successfully 

implemented in the 2DOF system and produced reasonable results. However, these 

were for some cases significantly different to what was found when using the linear 
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stiffness proposed by Eurocode. Furthermore, it was found that the 2DOF response 

can easily be estimated by utilizing the theory of hard impact and using an appropriate 

vehicle stiffness. This stiffness depends on the velocity at impact and should be higher 

for high velocities and lower for low velocities. Which stiffness to use is also highly 

dependent on the mass of the vehicle. 

The theory of hard impact is also utilized in Eurocode but here the same stiffness is 

used for all types of vehicles and for all impact velocities, i.e. a linear response is 

assumed. This stiffness is also very low compared to what was found from the studied 

crash tests, indicating that the obtained response might be too low. A proposed 

revision for Eurocode is to use different vehicle stiffnesses for different type of roads 

and vehicles. 

 

6.2 Recommendations of approach for analysis 

The following recommendations are valid for analyses of collisions against simply 

supported beams. 

 To estimate the shear force the 2DOF system should be used for frequency 

ratios below 2.5 and Biggs for frequency ratios between 2.5 and 4.5. For 

higher frequency ratios both the 2DOF system and Biggs will be on the unsafe 

side and an FE analysis may be necessary. 

 For frequency ratios above 1.5 it is possible to make a rough estimation of the 

beam response using the deflection from the characteristic impulse. For the 

shear force this response will always lie between the 2DOF and Biggs 

responses. 

 For vehicle impact against a rigid barrier, such as a heavy concrete structure, 

the response can be estimated by utilizing the theory of hard impact and using 

an appropriate vehicle stiffness. This will always give results on the safe side. 

 

6.3 Further studies 

In this thesis only elastic material response of the beam has been studied. To make the 

analysis more refined a plastic material behaviour should be implemented in the 

models in order to study what effect this might have on the beam response. Nonlinear 

response of the incoming object should also be investigated further. 

To confirm that vehicles have a bilinear load-deflection curve more studies of crash 

tests need to be conducted. It is also of interest to study if this behaviour differs for 

different impact velocities and different types of vehicles, for example heavy trucks. 

Furthermore, it is important to determine what stiffnesses to use since these, from 

what is found in this thesis, seem to be much larger compared to what is given in 

Eurocode. 

The correlation in shear force between the 2DOF system and FE analysis is, in this 

thesis, studied up to a frequency ratio of about five. But at this frequency ratio the 

tendency is that the correlation between the models will converge as the frequency 

ratio becomes even higher, with the 2DOF model producing results on the unsafe side. 

It also appears like the difference between the impact positions will disappear for high 

frequency ratios. These phenomena need to be investigated further to confirm that this 

really is the case. 
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A similar diagram as the one describing the load factor βel as a function of the 

frequency ratio could be created, but this time for the FE responses, both shear force 

and moment, rather than the 2DOF response. This should be made for both an elastic 

and plastic material response for both objects. The diagram should include high 

frequency ratios to also make it valid for a so called soft impact. 

In this thesis only collision against a simply supported beam is studied, but it could 

also be interesting to study a beam with other support conditions. Furthermore, it 

would be of interest to analyse a collision against a plate with different boundary 

conditions. It then needs to be investigated how the sectional forces should be 

calculated and how the response and crack pattern differs from static loading. In the 

same way as for the beam it should be determined how well a 2DOF system is able to 

describe the response of a plate. 

The bending stiffness EIb used in the FE analysis is modified by changing the value of 

the Young’s modulus E, rather than changing the moment of inertia I. This means that 

also the wave speed in the material is changed and could be a reason why the response 

is so different for very soft beams. This potential problem should be investigated 

further by changing the beam stiffness by modifying the moment of inertia directly. 

An intense impact on a concrete structure could cause spalling at the back of the 

structure. A study of this phenomenon should be carried out in order to be able to 

describe it in detail. It would also be useful to determine what simplified models to 

use in order to predict the size and velocity of the spalled concrete. 

A modal analysis of the beam deflection shape could be made, by using Fourier 

transformations, in order to better understand the importance of each of the different 

eigenmodes for different impact positions. 
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 Appendix A Central difference method 

The central difference method is summarized as a step by step algorithm in this 

appendix, see Table A.1, based on Craig Jr. and Kurdila (2006). 

Table A.1 Algorithm for the central difference method, a tool for solving the 

equation of motion. 

Step 0 (0.1) Input the mass, damping and stiffness matrices M, C, K 

(0.2) Calculate the LU factorization of M 

(0.3) Input the initial conditions u0 and v0 

(0.4) Set the simulation parameters including the time-step Δt 

(0.5) Calculate the initial acceleration from the equations of motion  

 00

1

0 )0( uvFu  
KCM
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(0.7) Calculate the starting displacement value from the equation 
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Step 3 Evaluate the set of velocities and accelerations as needed 
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Step 4 set t=t+Δt and continue to the next time-step 
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 Appendix B Results 2DOF system without barrier 

B.1 Elastic response 

In this section results for Collision 1, Collision 2 and Collision 3 are presented, 

according to the analysis discussed in section 3.1.1. 

Table B.1 Input parameters for the elastic classic collision analyses. 

Case 
m1 

[kg] 

m2 

[kg] 

k1 

[kN/m] 

v0 

[m/s] 

Collision 1 1 000 10 000 100 20 

Collision 2 100 000 10 000 100 20 

Collision 3 100 000 10 000 1 000 20 

 

  

a) b) 

  

c) d) 

Figure B.1 Results from an elastic classic collision, Collision 1, where 

m1 = 1 000 kg, m2 = 10 000 kg, k1 = 100 kN/m and v0 = 20 m/s. 
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a) b) 

  

c) d) 

Figure B.2 Results from an elastic classic collision, Collision 2, where 

m1 = 100 000 kg, m2 = 10 000 kg, k1 = 100 kN/m and v0 = 20 m/s. 
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a) b) 

  

c) d) 

Figure B.3 Results from an elastic classic collision, Collision 3, where 

m1 = 100 000 kg, m2 = 10 000 kg, k1 = 1 000 kN/m and v0 = 20 m/s. 
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B.2 Plastic response 

In this section results for Collision 4, Collision 5 and Collision 6 are presented, 

according to the analysis discussed in section 3.1.2. 

Table B.2 Input parameters for the plastic classic collision analyses. 

Case 
m1 

[kg] 

m2 

[kg] 

k1 

[MN/m] 

R1 

[kN] 

v0 

[m/s] 
e 

Collision 4 1 000 10 000 100 200 20 0.033 

Collision 5 100 000 10 000 100 200 20 0.011 

Collision 6 100 000 10 000 100 400 20 0.021 

 

 
 

a) b) 

  

c) d) 

Figure B.4 Results from a plastic classic collision, Collision 4, where 

m1 = 1 000 kg, m2 = 10 000 kg, k1 = 100 MN/m, R1 = 200 kN and 

v0 = 20 m/s. 
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a) b) 

 
 

c) d) 

Figure B.5 Results from a plastic classic collision, Collision 5, where 

m1 = 100 000 kg, m2 = 10 000 kg, k1 = 100 MN/m, R1 = 200 kN and 

v0 = 20 m/s. 
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a) b) 

  

c) d) 

Figure B.6 Results from a plastic classic collision, Collision 6, where 

m1 = 100 000 kg, m2 = 10 000 kg, k1 = 100 MN/m, R1 = 400 kN and 

v0 = 20 m/s. 
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 Appendix C Results 2DOF system with barrier 

C.1 Load factor βel 

In Johansson (2014a) a table and diagram showing the relation between the load 

factor βel and the frequency ratio f1 / f2 is presented for different values of the mass 

ratio m1 / m2, this is shown in Tables C.1 and C.2 and Figure C.1. 

Table C.1 Values for load factor βel 

 

βel = R2 / F2,el [-] 

f1 / f2 Hard  m1 / m2 [-] 

[-] impact 0.10 0.20 0.50 1.0 1.5 2.0 3.0 5.0 10 50 100 

0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

0.005 1.006 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.004 1.004 

0.050 1.050 1.050 1.049 1.049 1.048 1.047 1.046 1.044 1.041 1.032 0.986 0.993 

0.100 1.100 1.099 1.099 1.098 1.095 1.093 1.091 1.086 1.076 1.048 0.874 0.925 

0.125 1.125 1.124 1.122 1.118 1.110 1.103 1.095 1.080 1.050 1.005 0.802 0.651 

0.150 1.174 1.172 1.171 1.166 1.158 1.150 1.141 1.125 1.091 1.006 0.874 0.578 

0.175 1.158 1.157 1.156 1.153 1.148 1.143 1.137 1.123 1.092 1.002 0.672 0.517 

0.200 1.083 1.084 1.085 1.087 1.090 1.091 1.091 1.086 1.066 0.981 0.615 0.461 

0.225 1.180 1.172 1.165 1.143 1.108 1.074 1.042 1.027 1.024 0.949 0.563 0.420 

0.250 1.268 1.258 1.249 1.221 1.176 1.134 1.094 1.021 0.976 0.915 0.515 0.382 

0.275 1.348 1.335 1.323 1.288 1.233 1.182 1.134 1.047 0.927 0.879 0.479 0.352 

0.300 1.418 1.403 1.389 1.347 1.281 1.220 1.164 1.063 0.899 0.843 0.447 0.324 

0.350 1.536 1.515 1.495 1.437 1.349 1.269 1.196 1.069 0.873 0.776 0.389 0.281 

0.400 1.625 1.598 1.572 1.498 1.387 1.288 1.200 1.051 0.830 0.713 0.347 0.248 

0.450 1.689 1.656 1.624 1.534 1.400 1.284 1.183 1.016 0.777 0.655 0.310 0.221 

0.500 1.732 1.693 1.655 1.549 1.395 1.264 1.152 0.971 0.722 0.602 0.281 0.200 

0.550 1.757 1.712 1.668 1.548 1.375 1.232 1.111 0.920 0.667 0.552 0.256 0.182 

0.600 1.768 1.717 1.668 1.534 1.345 1.192 1.064 0.867 0.627 0.506 0.235 0.167 

0.650 1.766 1.710 1.656 1.510 1.308 1.146 1.014 0.814 0.605 0.465 0.217 0.154 

0.700 1.755 1.693 1.635 1.478 1.266 1.098 0.964 0.763 0.583 0.429 0.202 0.143 

0.750 1.736 1.670 1.608 1.442 1.220 1.049 0.913 0.714 0.560 0.405 0.188 0.133 

0.800 1.710 1.640 1.575 1.402 1.173 0.999 0.863 0.667 0.537 0.386 0.177 0.125 

0.850 1.680 1.607 1.538 1.359 1.126 0.951 0.816 0.624 0.513 0.367 0.166 0.118 

0.900 1.646 1.570 1.499 1.315 1.078 0.903 0.770 0.583 0.489 0.349 0.157 0.111 

0.950 1.609 1.531 1.458 1.270 1.032 0.858 0.727 0.548 0.466 0.332 0.149 0.105 

1.000 1.571 1.490 1.416 1.225 0.986 0.815 0.687 0.518 0.445 0.316 0.141 0.100 

1.125 1.471 1.387 1.310 1.117 0.883 0.721 0.606 0.456 0.397 0.281 0.126 0.089 

1.250 1.373 1.288 1.211 1.020 0.797 0.648 0.543 0.408 0.358 0.253 0.113 0.080 

1.375 1.283 1.198 1.122 0.936 0.725 0.588 0.492 0.377 0.325 0.230 0.103 0.073 

1.500 1.200 1.116 1.042 0.864 0.666 0.538 0.450 0.350 0.298 0.210 0.094 0.067 
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Table C.2 Values for load factor βel for hard impact. 

f1 / f2 βel  f1 / f2 βel  f1 / f2 βel 

[-] [-]  [-] [-]  [-] [-] 

1.625 1.125  4.5 0.439  13 0.154 

1.75 1.058  4.75 0.417  14 0.143 

1.875 0.997  5 0.396  15 0.133 

2 0.943  5.5 0.361  16 0.125 

2.125 0.893  6 0.331  17 0.118 

2.25 0.849  6.5 0.306  18 0.111 

2.375 0.808  7 0.284  19 0.105 

2.5 0.770  7.5 0.266  20 0.100 

2.75 0.705  8 0.249  21 0.095 

3 0.650  8.5 0.235  22 0.091 

3.25 0.602  9 0.222  23 0.087 

3.5 0.560  9.5 0.210  24 0.083 

3.75 0.520  10 0.200  25 0.080 

4 0.493  11 0.181    

4.25 0.465  12 0.166    
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Figure C.1 Relationship between load factor βel and frequency ratio f1 / f2 for 

different relations of the mass ratio m1 / m2. 
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C.2 Elastic response 

The load factor diagram together with the coordinates for the different impact tests are 

presented in Figure C.2. 
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Figure C.2 Relationship between load factor βel and frequency ratio f1 / f2 for 

different relations of the mass ratio m1 / m2. 

All results from the analysis discussed in section 3.2.1 are presented in this section. 

Table C.3 Table showing the coordinates in Figure C.1 of tested impacts 

Impact test number Mass ratio Frequency ratio Load factor βel 

1 0.1 0.6 1.72 

2 0.5 0.5 1.55 

3 1.5 0.4 1.29 

4 0.2 0.2 1.08 

5 2 0.2 1.09 

6 0.2 0.15 1.17 

7 2 0.5 0.97 

8 3 1 0.52 

9 1.5 1 0.81 

10 0.5 1 1.22 
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a) Displacement b) Velocity 

  

c) Impulse Body 1 d) Impulse Body 2 

  

e) Kinetic energy - internal work body 1 f) Kinetic energy - work body 2 

  

g) Kinetic energy - internal work body 1 h) Load pulse 

Figure C.3 Impact test number 1. 
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a) Displacement b) Velocity 

  

c) Impulse Body 1 d) Impulse Body 2 

  

e) Kinetic energy - internal work body 1 f) Kinetic energy - work body 2 

  

g) Kinetic energy - internal work body 1 h) Load pulse 

Figure C.4 Impact test number 2. 
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a) Displacement b) Velocity 

  

c) Impulse Body 1 d) Impulse Body 2 

  

e) Kinetic energy - internal work body 1 f) Kinetic energy - work body 2 

  

g) Kinetic energy - internal work body 1 h) Load pulse 

Figure C.5 Impact test number 3. 
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a) Displacement b) Velocity 

  

c) Impulse Body 1 d) Impulse Body 2 

  

e) Kinetic energy - internal work body 1 f) Kinetic energy - work body 2 

  

g) Kinetic energy - internal work body 1 h) Load pulse 

Figure C.6 Impact test number 4. 
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a) Displacement b) Velocity 

  

c) Impulse Body 1 d) Impulse Body 2 

  

e) Kinetic energy - internal work body 1 f) Kinetic energy - work body 2 

  

g) Kinetic energy - internal work body 1 h) Load pulse 

Figure C.7 Impact test number 5. 
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a) Displacement b) Velocity 

  

c) Impulse Body 1 d) Impulse Body 2 

  

e) Kinetic energy - internal work body 1 f) Kinetic energy - work body 2 

  

g) Kinetic energy - internal work body 1 h) Load pulse 

Figure C.8 Impact test number 6. 
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a) Displacement b) Velocity 

  

c) Impulse Body 1 d) Impulse Body 2 

  

e) Kinetic energy - internal work body 1 f) Kinetic energy - work body 2 

  

g) Kinetic energy - internal work body 1 h) Load pulse 

Figure C.9 Impact test number 7. 
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a) Displacement b) Velocity 

  

c) Impulse Body 1 d) Impulse Body 2 

  

e) Kinetic energy - internal work body 1 f) Kinetic energy - work body 2 

  

g) Kinetic energy - internal work body 1 h) Load pulse 

Figure C.10 Impact test number 8. 
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a) Displacement b) Velocity 

  

c) Impulse Body 1 d) Impulse Body 2 

  

e) Kinetic energy - internal work body 1 f) Kinetic energy - work body 2 

  

g) Kinetic energy - internal work body 1 h) Load pulse 

Figure C.11 Impact test number 9. 
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a) Displacement b) Velocity 

  

c) Impulse Body 1 d) Impulse Body 2 

  

e) Kinetic energy - internal work body 1 f) Kinetic energy - work body 2 

  

g) Kinetic energy - internal work body 1 h) Load pulse 

Figure C.12 Impact test number 10. 
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C.3 Elasto-plastic response 

The elasto-plastic test uses the indata from Table C.4 as a base, then changes are made 

to one parameter at a time in order to find the impact of each parameter. 

These results are not discussed in the main report but are included here since it might 

be interesting to see how a elasto-plastic system behaves. 

Table C.4 Base parameters for the analysis in this section. 

m1 2 000 [kg] 

m2 10 000 [kg] 

v0 20 [m/s] 

k1 1 [MN/m] 

k2 100 [MN/m] 

R1 400 [N] 

R2 200 [N] 
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a) m1 = 1 000 kg d) v0 = 15 m/s 

  

b) m1 = 2 000 kg e) v0 = 20 m/s 

  

c) m1 = 5 000 kg f) v0 = 25 m/s 

Figure C.13 a, b and c shows the load pulses for different mass of the impacting 

object, d, e and f shows the load pulses for different initial velocities. 
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a) k1 = 1x10
5
 N/m d) m1 = 1 000 kg 

  

b) k1 = 1x10
6
 N/m e) m1 = 2 000 kg 

  

c) k1 = 1x10
7
 N/m f) m1 = 5 000 kg 

Figure C.14 a, b and c shows how the load pulses changes for different stiffness of 

the impacting object, d, e, and f shows the displacement for different 

values to mass 1. 
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a) v0 = 15 m/s d) k1 = 1x10
5
 N/m 

  

b) v0 = 20 m/s e) k1 = 1x10
6
 N/m 

  

c) v0 = 25 m/s f) k1 = 1x10
7
 N/m 

Figure C.15 a, b and c shows the displacement for different initial velocities of body 

1, d, e and f shows the displacement for different values of the stiffness 

k1. 
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a) m1 = 1 000 kg d) v0 = 25 m/s 

  

b) m1 = 2 000 kg e) v0 = 25 m/s 

  

c) m1 = 5 000 kg f) v0 = 25 m/s 

Figure C.16 a, b and c shows how the velocity changes for different values of mass 

1, d, e and f show how the velocity changes for different values of the 

velocity v0. 
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 Appendix D 2DOF Effect of impact position on a beam 

In this appendix all the results from the analysis discussed in section 5.1 are 

presented. 

D.1 Original beam 

 

  

  

  

Figure D.1 Results from the simulated collision, describing the differences in 

position of impact for both the incoming object and the beam. 
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D.2 Stiffer beam 

 

  

  

Figure D.2 Results from the simulated collision with a stiffer beam, describing the 

differences in position of impact for both the incoming object and the 

beam. 
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D.3 Softer beam 

 

  

  

Figure D.3 Results from the simulated collision with a softer beam, describing the 

differences in position of impact for both the incoming object and the 

beam. 
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D.4 Stiffer colliding object 

 

  

  

Figure D.4 Results from the simulated collision with a stiffer object, describing the 

differences in position of impact for both the incoming object and the 

beam. 
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D.5  Softer colliding object 

 

  

  

Figure D.5 Results from the simulated collision with a softer object, describing the 

differences in position of impact for both the incoming object and the 

beam. 

alpha=0.5 alpha=0.4 alpha=0.3 alpha=0.2 alpha=0.1

0

20

40

60

80

100

120

140

160

180

0.00 0.10 0.20 0.30 0.40 0.50

R
ea

ct
io

n
 f

o
rc

e 
R

1
[k

N
]

Time t [s]

-50

0

50

100

150

200

0.00 0.10 0.20 0.30 0.40 0.50
R

ea
ct

io
n
 f

o
rc

e 
R

2
[k

N
]

Time t [s]

-3

-2

-1

0

1

2

3

0.00 0.10 0.20 0.30 0.40 0.50

D
is

p
la

ce
m

en
t 

u
1

[m
]

Time t [s]

-0.01

0.00

0.01

0.02

0.03

0.00 0.10 0.20 0.30 0.40 0.50

D
is

p
la

ce
m

en
t 

u
2

[m
]

Time t [s]





CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:80 
E-1 

 Appendix E Results from finite element analysis 

In this appendix all the results from the analysis discussed in section 5.2 are 

presented. In Table E.1 the properties used in the different analyses can be seen. 

Table E.1 The different set of properties used in each analysis. 

Property set 

number 

Spring stiffness k1 

[kN/m] 

Equivalent Young’s 

modulus EII [GPa] 

1 300 8.134 

2 75 8.134 

3 1 200 8.134 

4 300 2.034 

5 300 32.537 
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E.1 Original beam – Property set 1 

 

 

 

 

 

Figure E.1 Development of moment up to maximum moment over time for five 

different impact positions. 
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Figure E.2 Development up to maximum shear force over time for five different 

impact positions. 
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Figure E.3 Development up to maximum deflection over time for five different 

impact positions. 
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Figure E.4 Comparison of maximum responses for five different impact positions. 
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E.2 Stiffer beam – Property set 5 

 

 

 

Figure E.5 Development of moment up to maximum moment over time for three 

different impact positions. 
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Figure E.6 Development up to maximum shear force over time for three different 

impact positions. 
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Figure E.7 Development up to maximum deflection over time for three different 

impact positions. 
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Figure E.8 Comparison of maximum responses for three different impact positions. 
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E.3 Softer beam – Property set 4 

 

 

 

Figure E.9 Development of moment up to maximum moment over time for three 

different impact positions. 
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Figure E.10 Development up to maximum shear force over time for three different 

impact positions. 
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Figure E.11 Development up to maximum deflection over time for three different 

impact positions. 
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Figure E.12 Comparison of maximum responses for three different impact positions. 
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E.4 Stiffer colliding object – Property set 3 

 

 

 

Figure E.13 Development of moment up to maximum moment over time for three 

different impact positions. 
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Figure E.14 Development up to maximum shear force over time for three different 

impact positions. 
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Figure E.15 Development up to maximum deflection over time for three different 

impact positions. 
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Figure E.16 Comparison of maximum responses for three different impact positions. 
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E.5 Softer colliding object – Property set 2 

 

 

 

Figure E.17 Development of moment up to maximum moment over time for three 

different impact positions. 
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Figure E.18 Development up to maximum shear force over time for three different 

impact positions. 
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Figure E.19 Development up to maximum deflection over time for three different 

impact positions. 
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Figure E.20 Comparison of maximum responses for three different impact positions. 
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 Appendix F Comparison of model responses 

The comparison of responses from a collision modelled with the 2DOF system in 

MATLAB and with FEM software ADINA are presented in this appendix. The study 

in this section is based on the concrete beam described in section 4.1.2. The velocity 

v0 of the incoming object is set to 20 m/s and the stiffness k1 is set to 300 kN/m. These 

stiffnesses corresponds to property set 1, and the stiffnesses are then varied to create 

the other property sets, see Table F.1. 

Table F.1 Input parameters for the different collision analyses. 

α 
Property 

set 

k1 

[kN/m] 

EIb 

[MNm
2
] 

kb 

[MN/m] 

m1 

[kg] 

m2 

[kg] 2

1

m

m
 

f1 

[Hz] 

f2 

[Hz] 2

1

f

f
 

0.5 

1 300 18.302 7.028 1 000 1 748.6 0.572 2.757 10.09 0.273 

2 75 18.302 7.028 1 000 1 748.6 0.572 1.378 10.09 0.137 

3 1 200 18.302 7.028 1 000 1 748.6 0.572 5.513 10.09 0.546 

4 300 4.576 1.757 1 000 1 748.6 0.572 2.757 5.045 0.546 

5 300 73.208 28.112 1 000 1 748.6 0.572 2.757 20.18 0.137 

0.3 

1 300 18.302 9.960 1 000 2 310.8 0.433 2.757 10.45 0.264 

2 75 18.302 9.960 1 000 2 310.8 0.433 1.378 10.45 0.132 

3 1 200 18.302 9.960 1 000 2 310.8 0.433 5.513 10.45 0.528 

4 300 4.576 2.490 1 000 2 310.8 0.433 2.757 5.225 0.528 

5 300 73.208 39.842 1 000 2 310.8 0.433 2.757 20.90 0.132 

0.1 

1 300 18.302 54.229 1 000 10 092 0.099 2.757 11.67 0.236 

2 75 18.302 54.229 1 000 10 092 0.099 1.378 11.67 0.118 

3 1 200 18.302 54.229 1 000 10 092 0.099 5.513 11.67 0.473 

4 300 4.576 13.557 1 000 10 092 0.099 2.757 5.833 0.473 

5 300 73.208 216.92 1 000 10 092 0.099 2.757 23.33 0.118 
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F.1  Original beam – Property set 1 

  

a) u1, α = 0.5 b) u1, α = 0.4 

  

c) u1, α = 0.3 d) u1, α = 0.2 

 

 

e) u1, α = 0.1  

Figure F.1 Comparison of response in displacement u1 over time between 2DOF 

and FEM, for five different positions of loading and with property set 1. 
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a) u2, α = 0.5 b) u2, α = 0.4 

  

c) u2, α = 0.3 d) u2, α = 0.2 

 

 

e) u2, α = 0.1  

Figure F.2 Comparison of response in displacement u2 over time between 2DOF 

and FEM, for five different positions of loading and with property set 1. 
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a) RA, α = 0.5 b) RA, α = 0.4 

  

c) RA, α = 0.3 d) RA, α = 0.2 

 

 

e) RA, α = 0.1  

Figure F.3 Comparison of response in support reaction force RA over time between 

2DOF and FEM, for five different positions of loading and with 

property set 1. 
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a) Mα, α = 0.5 b) Mα, α = 0.4 

  

c) Mα, α = 0.3 d) Mα, α = 0.2 

 

 

e) Mα, α = 0.1  

Figure F.4 Comparison of response in moment Mα over time between 2DOF and 

FEM, for five different positions of loading and with property set 1. 
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a) Moment Envelope 

 

b) Shear Envelope 

Figure F.5 Moment and shear envelope for property set 1 
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F.2  Softer beam – Property set 4 

  

a) u1, α = 0.5 b) u2, α = 0.5 

  

c) u1, α = 0.3 d) u2, α = 0.3 

  

e) u1, α = 0.1 f) u2, α = 0.1 

Figure F.6 Comparison of response in displacement u1 and u2 over time between 

2DOF and FEM, for three different positions of loading and with 

property set 4. 
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a) RA, α = 0.5 b) Mα, α = 0.5 

  

c) RA, α = 0.3 d) Mα, α = 0.3 

  

e) RA, α = 0.1 f) Mα, α = 0.1 

Figure F.7 Comparison of response in support reaction force RA and moment Mα 

over time between 2DOF and FEM, for three different positions of 

loading and with property set 4. 
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a) Moment Envelope 

 

b) Shear Envelope 

Figure F.8 Moment and shear envelope for property set 4. 
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F.3  Stiffer beam – Property set 5 

  

a) u1, α = 0.5 b) u2, α = 0.5 

  

c) u1, α = 0.3 d) u2, α = 0.3 

  

e) u1, α = 0.1 f) u2, α = 0.1 

Figure F.9 Comparison of response in displacement u1 and u2 over time between 

2DOF and FEM, for three different positions of loading and with 

property set 5. 
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a) RA, α = 0.5 b) Mα, α = 0.5 

  

c) RA, α = 0.3 d) Mα, α = 0.3 

  

e) RA, α = 0.1 f) Mα, α = 0.1 

Figure F.10 Comparison of response in support reaction force RA and moment Mα 

over time between 2DOF and FEM, for three different positions of 

loading and with property set 5. 
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a) Moment Envelope 

 

b) Shear Envelope 

Figure F.11 Moment and shear envelope for property set 5. 
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F.4  Softer colliding object – Property set 2 

  

a) u1, α = 0.5 b) u2, α = 0.5 

  

c) u1, α = 0.3 d) u2, α = 0.3 

  

e) u1, α = 0.1 f) u2, α = 0.1 

Figure F.12 Comparison of response in displacement u1 and u2 over time between 

2DOF and FEM, for three different positions of loading and with 

property set 2. 
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a) RA, α = 0.5 b) Mα, α = 0.5 

  

c) RA, α = 0.3 d) Mα, α = 0.3 

  

e) RA, α = 0.1 f) Mα, α = 0.1 

Figure F.13 Comparison of response in support reaction force RA and moment Mα 

over time between 2DOF and FEM, for three different positions of 

loading and with property set 2. 
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a) Moment Envelope 

 

b) Shear Envelope 

Figure F.14 Moment and shear envelope for property set 2. 
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F.5  Stiffer colliding object – Property set 3 

  

a) u1, α = 0.5 b) u2, α = 0.5 

  

c) u1, α = 0.3 d) u2, α = 0.3 

  

e) u1, α = 0.1 f) u2, α = 0.1 

Figure F.15 Comparison of response in displacement u1 and u2 over time between 

2DOF and FEM, for three different positions of loading and with 

property set 3. 
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a) RA, α = 0.5 b) Mα, α = 0.5 

  

c) RA, α = 0.3 d) Mα, α = 0.3 

  

e) RA, α = 0.1 f) Mα, α = 0.1 

Figure F.16 Comparison of response in support reaction force RA and moment Mα 

over time between 2DOF and FEM, for three different positions of 

loading and with property set 3. 
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a) Moment Envelope 

 

b) Shear Envelope 

Figure F.17 Moment and shear envelope for property set 3. 
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 Appendix G MathCad calculations 

G.1 Beam transformation factors and stiffness 

Transformation factors:

 0.5  1  0.5
3


2


2


48

Point load:

m.pl
1

3


1

( )
2

1

3
 

2



3

3










 0.333333

m.el


3

28 
2



23 
2

 10  2  
105 

2





2
2

12 




10 
2




1

12  
2






10
 0.485714

Stiffness of a beam:

Ec 30GPa Es 200GPa wb 1m hb 0.3m s

Es

Ec

6.666667

srebars 0.10m  16mm A
 

2


4
 As

A

srebars

wb

c 40mm d hb c


2
 0.252m d´ hb d 0.048m

x 60.35mm (guess) xcc
x

3
0.020117m

Acc wb x

AII Acc s 1  As s As

xII

Acc xcc s 1  As d´ s As d

AII

60.351289mm

III

wb x
3



12
Acc x xcc 2 s 1  As x d´( )

2
 s As d x( )

2
 6.100744 10

8
 mm

4


II

wb hb
3



12
2.25 10

9
 mm

4


EIb Ec III 1.830223 10
7

 N m
2

 l 5m

kb

3 EIb

l
3


2
 

2


7.028057 10
3


kN

m

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ADINA indata:

Equivalent Youngs modulus:

EII

III

II

Ec 8.134325GPa

stiffer with a factor 4:

E4x EII 4 32.537299GPa

kb.4x

3 E4x II

l
3


2
 

2


2.811223 10
4


kN

m


E4xII 7.320892 10
7

 N m
2



weaker with a factor 4:

E0.25x

EII

4
2.033581GPa

kb.0.25x

3 E0.25x II

l
3


2
 

2


1.757014 10
3


kN

m


E0.25xII 4.575558 10
6

 N m
2



2DOF vs FEM comparison:

kb 7.028057 10
3


kN

m


k1 1 300
kN

m


kuse kb
1

1
 7.028057

MN

m


m1 1000kg mb 3600kg m2 m.elmb 1.748571 10
3

 kg

f1
1

2

k1

m1

2.756644
1

s
 f2

1

2 

kuse

m2

10.090114
1

s


f1

f2

0.273203

Comparison of deflection with characteristic impulse and elastic response:

v0 20
m

s
 Ik 2m1 v0 40 kN s

u2

Ik

m2 kuse
360.828372mm theoretical value of the beam deflection

Fsta kuse u2 2.535922 10
3

 kN

RA Fsta  1.267961 10
3

 kN
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 Appendix H MATLAB algorithms 

H.1 2DOF system - main algorithm 
%---------------------- 2-DOF SYSTEM --------------------------- 

% A program that calculates the response of a 2-DOF system 

containing 

% 2 masses and 2 springs connected to a fixed support. This 

system 

% represents a collision between two bodies and works for both 

plastic 

% and elastic response plus a bilinear material relationship with 

linear 

% plastic behaviour. 

% 

% Developed for the Master's Thesis "Design with regard to 

collision impact" 

% by Erik Asplund and Daniel Steckmest 

% 

% Last modified: 2014-05-26 

%---------------------------------------------------------------- 

%---------------------------------------------------------------- 

clear all 

close all 

clc 

%%--------------------------------------------------------------- 

%---------------INDATA------------------------------------------- 

m1=1500;        %Mass of body 1 [kg] 

m2=10092;       %Mass of body 2 [kg] 

 

k1=300e3;       %Stiffness of spring 1 [N/m] 

k1_2=4*k1;      %Stiffness of second stiffer part of spring 1 

response 

k2=10e6;        %Stiffness of spring 2 [N/m] 

 

R1=400e100;     %Load capacity of body 1 [N] 

R2=400e100;     %Load capacity of body 2 [N] 

 

v0=[25;0];          %Initial velocity of body 1 and 2 [m/s] 

U_Rd=[1e100 1e100]; %Ultimate plastic deformation [m] 

u_stiffness=0.5;    %After what displ. the change in stiffness 

occurs [m] 

 

%--------------Beam Parameters----------------------------------- 

%position of impact load 

alpha=0.5; 

beta=1-alpha; 

 

%mass 

h=0.3;              %Height of beam [m] 

w=1;                %Width of beam  [m] 

l=5;                %Lenght of beam [m] 

rho=2400;           %Density of beam [kg/m^3] 

m_beam=h*w*l*rho;   %Mass of beam [kg] 

 

%beam stiffness 

EI_b=1.830223e7;    %bending stiffness of beam 

EI_b=(1/64)*EI_b; 

k2=3*EI_b/(l^3*alpha^2*beta^2);  %Beam stiffness used in 2DOF 

 

%transformation factor from beam to 2DOF 

kappa_m_el=alpha^3/(28*beta^2)+(23*alpha^2+10*alpha+2)*beta/(105*

alpha^2)... 

    +(beta^2-2)/(12*alpha)-

alpha/(10*beta^2)+1/(12*alpha*beta^2)+alpha/10; 

 

%transformed mass used in 2DOF 

m2=kappa_m_el*m_beam; 

%---------------------------------------------------------------- 

 

% Mass matrix 

M=[m1 0; 

    0 m2]; 

 

% Stiffness matrix 

K=[k1 -k1; 

   -k1  k1+k2]; 

 

K_el=[k1 k2 k1_2];              %elastic stiffnesses 

U_el=[R1/k1 R2/k2 u_stiffness]; %maximum elastic displacement 

 

%Calculating the eigenvalues and eigenvectors using a direct  

%eigenvalue solver 

[Lambda, Egv]=eigen(K,M); 

 

%--- Central difference method -------------------------- 

%Following the algorithm presented in Craig Jr, Kurdila (2006) 

 

%Initial conditions 

u0=zeros(length(K),1);  %Displacement 

a0=zeros(length(K),1);  %Acceleration 

p0=zeros(length(K),1);  %External force 

 

%Calculating the time step 

%h_crit=2/max(sqrt(Lambda));    %critical time step 

% h=0.01*h_crit;                %decreased time step, increased 

precision 

% t_analysis=0.6;               %time period for analysis [s]     

% n=ceil(t_analysis/h);         %number of iterations 

n=1000;     %using a predefined number of steps 

h=0.0005;   %using a predefined time step 

 

%Starting values 

u_n_minus1=u0-h*v0+(h^2/2)*a0; 

p_n=p0;      

 

%Predefining 

u=zeros(length(K),n);       %Displacement 

v=zeros(length(K),n);       %Velocity 

a=zeros(length(K),n);       %Acceleration 
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U_pl=zeros(length(K),n);    %Plastic deformation 

R=zeros(length(K),n);       %Reaction forces  

du=zeros(1,n);              %Deformation of spring 1 

k=zeros(2,n);               %stiffness vector 

Wi=zeros(length(K),n);      %Internal work 

We=zeros(length(K),n);      %External work 

Ek=zeros(length(K),n);      %Kinetic energy 

Im=zeros(length(K),n);      %Impulse of mass 

I_R=zeros(length(K),n);     %Impulse of reaction force 

R_biggs=zeros(n,1); 

kkk=zeros(1,n); 

 

 

for i=1:n 

     

    %Since an elasto-plastic material model is used the stiffness 

matrix,  

    %K, is updated in each iteration. Also the reaction forces 

are  

    %calculated. 

    [U_pl, R, du, K, k1, 

k2,kkk]=Rforce(u,du,i,U_el,U_pl,U_Rd,K_el,R,kkk); 

     

    k(:,i)=[k1;k2]; %stiffness vector 

     

    %Right hand side terms of the iteration in central difference 

method 

    RHSn=p_n-(K-(2/(h^2))*M)*u(:,i)-((1/h^2)*M)*u_n_minus1; 

     

    %Solves the displacement for the next timestep 

    u(:,i+1)=((1/h^2)*M)\RHSn; 

     

    %Calculating velocity and acceleration for each timestep 

    if i==1 

        v(:,i)=v0; 

        a(:,i)=a0; 

    else 

        v(:,i)=(u(:,i+1)-u(:,i-1))/(2*h); 

        a(:,i)=(u(:,i+1)-2*u(:,i)+u(:,i-1))/h^2; 

    end 

 

    %Calculating internal and external work, kinetic energies and 

impulse 

    if i==1 %Skips the first step 

    else 

    dWi(1)=(R(1,i)+R(1,i-1))/2*(u(1,i)-u(1,i-1)); 

    Wi(1,i)=Wi(1,i-1)+dWi(1); 

   

    dWi(2)=(R(2,i)+R(2,i-1))/2*(u(2,i)-u(2,i-1)); 

    Wi(2,i)=Wi(2,i-1)+dWi(2); 

     

    dWe(2)=(R(1,i)+R(1,i-1))/2*(u(2,i)-u(2,i-1)); 

    We(2,i)=We(2,i-1)+dWe(2); 

     

    dI_R(1)=(R(1,i)+R(1,i-1))/2*h; 

    I_R(1,i)=I_R(1,i-1)+dI_R(1); 

   

 

    dI_R(2)=(R(2,i)+R(2,i-1))/2*h; 

    I_R(2,i)=I_R(2,i-1)+dI_R(2); 

    end 

     

    Ek(:,i)=(M*v(:,i).^2)/2; 

    Im(:,i)=M*v(:,i); 

     

    %Reactionforce according to Biggs 

    a_1=1.357; 

    a_2=-0.457; 

    R_biggs(i)=a_1*R(2,i)+a_2*R(1,i); 

     

    %Updating the values 

    u_n_minus1=u(:,i); 

end 

 

%---values for comparison with classic theory--- 

if v(1,n)>0 

    Ek3=Ek(1,n)+Ek(2,n); 

else 

    Ek3=Ek(2,n); 

end 

 

E_k_ratio(1)=Ek3/Ek(1,1); 

e=(v(2,n)-v(1,n))/v0(1); 

------------------------------------------------ 

 

%Remove the last values in the displacement vector since not 

needed 

u(:,n+1)=[]; 

%% 

 

%---------------------------------------------------------------- 

%Plotting the graphs 

%---------------------------------------------------------------- 

t=linspace(0,h*n,n);  %Creates a time vector to be able to plot 

 

figure(1) 

plot(t,u(1,:),'m'); 

hold on 

plot(t,u(2,:),'r--') 

%plot(t,du) 

title('Displacement for mass 1 and 2 ') 

legend('Displacement mass 1 ', 'Displacement mass 2', 

'Location','SouthWest') 

xlabel('Time [s]') 

ylabel('Displacement [m]') 

 

figure(2) 

plot(t,v(1,:),'m'); 

hold on 

plot(t,v(2,:),'r--') 

title('Velocity for mass 1 and 2 ') 

legend('Velocity mass 1 ','Velocity mass 2') 

xlabel('Time [s]') 
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ylabel('Velocity [m/s]') 

 

figure(3) 

plot(t,a(1,:),'m'); 

hold on 

plot(t,a(2,:),'r--') 

title('Acceleration for mass 1 and 2 ') 

legend('Acceleration mass 1 ','Acceleration mass 

2','Location','SouthEast') 

xlabel('Time [s]') 

ylabel('Acceleration [m/s^2]') 

 

figure(4) 

plot(t,k) 

title('Change in stiffness ') 

legend('k1 ','k2') 

xlabel('Time [s]') 

ylabel('Stiffness [N/m]') 

 

figure(5) 

plot(t,Wi(1,:),'m'); 

hold on 

plot(t,We(1,:),'r') 

plot(t,Ek(1,:),'b') 

title('Work and kinetic energy mass 1 ') 

legend('Internal work mass 1 ','External work mass 1'... 

       ,'Kinetic energy mass 1','Location','NorthEast') 

xlabel('Time [s]') 

ylabel('Work, W [J]') 

 

figure(6) 

plot(t,Wi(2,:),'m'); 

hold on 

plot(t,We(2,:),'r') 

plot(t,Ek(2,:),'b') 

title('Work and kinetic energy mass 2 ') 

legend('Internal work mass 2 ','External work mass 2'... 

     ,'Kinetic energy mass 2','Location','NorthEast') 

xlabel('Time [s]') 

ylabel('Work, W [J]') 

 

figure(7) 

plot(t,Im(1,:),'m'); 

hold on 

plot(t,I_R(1,:),'r') 

title('Impulse mass 1') 

legend('Impulse of mass','Impulse of reaction force'... 

     ,'Location','NorthEast') 

xlabel('Time [s]') 

ylabel('Work, W [J]') 

 

figure(8) 

plot(t,Im(2,:),'m'); 

hold on 

plot(t,I_R(2,:),'r') 

title('Impulse mass 2 ') 

legend('Impulse of mass','Impulse of reaction force'... 

     ,'Location','NorthEast') 

xlabel('Time [s]') 

ylabel('Work, W [J]') 

 

figure(9) 

plot(t,R(1,:),'m'); 

hold on 

plot(t,R(2,:),'r') 

plot(t,R_biggs,'b') 

title('Load - Deformation curve ') 

legend('R1','R2'... 

    ,'Location','NorthEast') 

xlabel('Time [s]') 

ylabel('Load, [N]') 

 

figure(10) 

plot(du,R(1,:),'m'); 

hold on 

plot(u(2,:),R(2,:),'r') 

xlim([0 max(max(u))]) 

title('Load - Deformation curve ') 

legend('R1','R2'... 

     ,'Location','NorthEast') 

xlabel('Deformation [m]') 

ylabel('Load, [N]') 

max(u(2,:)) 
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H.2 2DOF system - function file 
function[U_pl,R,du,K,k1,k2,kkk]=Rforce(u,du,i,U_el,U_pl,U_

Rd,K_el,R,kkk) 

%---------------------------------------------------------

--------- 

% Function file that updates the stiffness matrix and the 

reaction forces 

% when using the central difference method to solve a 2-

DOF system using a 

% elastic, plastic or elasto-plastic linear/bilinear 

material model. 

% 

% Developed for the Master's Thesis "Design with regard to 

collision impact" 

% by Erik Asplund and Daniel Steckmest 

% 

% Last modified: 2014-05-26 

%--------------------------------------------------------- 

%--------------------------------------------------------- 

 

du(i)=u(1,i)-u(2,i); 

 

%------ONLY USE FOR LINEAR PLASTIC BEHAVIOUR----- 

Q=0; 

if i==1 

elseif du(i)<max(du) 

    du(i)=max(du);  %make sure the deformation stays at 

the max value 

    Q=1; 

end 

------------------------------------------------- 

 

%calculate the additional plastic deformation 

U_max=[max(du(1:i-1)) max(u(2,1:i-1))]; 

%for body 1 

if du(i)>U_el(1) && du(i)>U_max(1) 

    dU_pl(1)=du(i)-max(U_max(1),U_el(1)); 

else 

    dU_pl(1)=0; 

end 

%for body 2 

if u(2,i)>U_el(2) && u(2,i)>U_max(2) 

    dU_pl(2)=u(2,i)-max(U_max(2),U_el(2)); 

else 

    dU_pl(2)=0; 

end 

 

%calculation of plastic deformation 

if i==1 

else 

    U_pl(:,i)=dU_pl'+U_pl(:,i-1); 

end 

 

%Calculation of reaction forces 

%for body 1 

if du(i)<0 || U_pl(1,i)>U_Rd(1) || Q==1 

    R(1,i)=0; 

elseif du(i)>U_el(3) 

    %R(1,i)=max(0,K_el(3)*(du(i)-U_pl(1,i))); 

    %R(1,i)=max(0,R(1,i-1)+K_el(3)*(du(i)-du(i-1)-

U_pl(1,i))); 

    R(1,i)=max(0,U_el(3)*K_el(1)+K_el(3)*(du(i)-U_el(3)-

U_pl(1,i))); 

    kkk(i)=1; 

else 

    R(1,i)=max(0,K_el(1)*(du(i)-U_pl(1,i))); 

    kkk(i)=0.5; 

end 

%for body 2 

if U_pl(2,i)>U_Rd(2) 

    R(2,i)=0; 

else 

    R(2,i)=K_el(2)*(u(2,i)-U_pl(2,i)); 

end 

 

%update the values for the stiffnesses 

%for body 1 

if du(i)==0 

    k1=K_el(1); 

elseif U_pl(1)>U_Rd(1) 

    k1=0; 

else 

    k1=R(1,i)/du(i); 

end 

 

%for body 2 

if u(2,i)==0 

    k2=K_el(2); 

elseif U_pl(2)>U_Rd(2) 

    k2=0; 

else 

    k2=R(2,i)/u(2,i); 

 end 

 

 %assembly of stiffness matrix 

K=[k1 -k1;           

    -k1  k1+k2]; 
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H.3 Classic theory 
%---------------------------------------------------------------- 

% Collision impact according to classical theory 

%---------------------------------------------------------------- 

clc 

clear all 

close all 

 

%Indata 

m1=1000; 

m2=10000; 

v0=20; 

M=[m1 m2]; 

 

%Coefficient of restitution 

e=0;     % 1 = elstic impact     0 = plastic impact       

 

%Kinetic energy before impact 

E_k0=m1*v0(1).^2/2 

 

%Momentum before impact 

p_0=m1*v0(1) 

 

 

%Velocity after impact 

v_cl(:,1)=v0(1)*(m1-(e*m2))/(m1+m2); 

v_cl(:,2)=v0(1)*((1+e)*m1)/(m1+m2); 

 

%Kinetic energy after impact 

E_k=M.*v_cl.^2/2; 

 

%Kinetic energy actiong in the same direction as mass 2, exterior 

work on 

%second body 

 

if v_cl(1)>0 

    E_k(3)=E_k(1)+E_k(2); 

else 

    E_k(3)=E_k(2); 

end 

 

%Energy quota, shows how much of the initial kinetic energy that 

is  

%continuing in the direction of body 2 

v_cl 

E_k 

E_k_q=E_k(3)/E_k0 
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 Appendix I ADINA command files 

I.1 ADINA-IN command file for setting up the model 
* Command file created from session file information stored 

within AUI database 

*--- Database created 28 March 2014, 00:00:00 ---* 

*--- by ADINA: AUI version 9.0.1 ---* 

* 

DATABASE NEW SAVE=NO PROMPT=NO 

FEPROGRAM ADINA 

CONTROL FILEVERSION=V90 

* 

FEPROGRAM PROGRAM=ADINA 

* 

CONTROL PLOTUNIT=PERCENT VERBOSE=YES ERRORLIM=0 LOGLIMIT=0 

UNDO=5, 

     PROMPTDE=UNKNOWN AUTOREPA=YES DRAWMATT=YES DRAWTEXT=EXACT, 

     DRAWLINE=EXACT DRAWFILL=EXACT AUTOMREB=YES ZONECOPY=NO, 

     SWEEPCOI=YES SESSIONS=YES DYNAMICT=YES UPDATETH=YES 

AUTOREGE=NO, 

     ERRORACT=CONTINUE FILEVERS=V90 INITFCHE=NO SIGDIGIT=6, 

     AUTOZONE=YES PSFILEVE=V0 ELEMENT-=REPEAT 

* 

FEPROGRAM PROGRAM=ADINA 

* 

MASTER ANALYSIS=DYNAMIC-DIRECT-INTEGRATION MODEX=EXECUTE, 

     TSTART=0.00000000000000 IDOF=0 OVALIZAT=NONE 

FLUIDPOT=AUTOMATIC, 

     CYCLICPA=1 IPOSIT=STOP REACTION=YES INITIALS=NO FSINTERA=NO, 

     IRINT=DEFAULT CMASS=NO SHELLNDO=AUTOMATIC AUTOMATI=OFF, 

     SOLVER=SPARSE CONTACT-=CONSTRAINT-FUNCTION, 

     TRELEASE=0.00000000000000 RESTART-=NO FRACTURE=NO LOAD-

CAS=NO, 

     LOAD-PEN=NO SINGULAR=YES STIFFNES=0.000100000000000000, 

     MAP-OUTP=NONE MAP-FORM=NO NODAL-DE='' POROUS-C=NO 

ADAPTIVE=0, 

     ZOOM-LAB=1 AXIS-CYC=0 PERIODIC=NO VECTOR-S=GEOMETRY EPSI-

FIR=NO, 

     STABILIZ=NO STABFACT=1.00000000000000E-10 RESULTS=PORTHOLE, 

     FEFCORR=NO BOLTSTEP=1 EXTEND-S=YES CONVERT-=NO DEGEN=YES, 

     TMC-MODE=NO ENSIGHT-=NO IRSTEPS=1 INITIALT=NO TEMP-INT=NO, 

     ESINTERA=NO OP2GEOM=NO INSITU-D=NO OP2ERCS=ELEMENT 2DPL-

AX=YZ-Z 

* 

ANALYSIS DYNAMIC-DIRECT-INTEGRATION METHOD=NEWMARK, 

     DELTA=0.500000000000000 ALPHA=0.250000000000000, 

     THETA=1.40000000000000 TIMESTEP=TOTALTIME NCRSTEP=1, 

     CRSTEP=0.00000000000000 MASS-SCA=1.00000000000000, 

     DTMIN1=0.00000000000000 DTMIN2=0.00000000000000, 

     GAMMA=0.500000000000000 MIDLOAD=TIMEFUNCTION, 

     GAMAP=0.540000000000000 

* 

COORDINATES POINT SYSTEM=0 

@CLEAR 

1 0.00000000000000 0.00000000000000 0.00000000000000 0 

2 2.50000000000000 0.00000000000000 0.00000000000000 0 

3 5.00000000000000 0.00000000000000 0.00000000000000 0 

4 2.50000000000000 2.50000000000000 0.00000000000000 0 

@ 

* 

LINE STRAIGHT NAME=1 P1=1 P2=2 

* 

LINE STRAIGHT NAME=2 P1=2 P2=3 

* 

MATERIAL ELASTIC NAME=1 E=8.13400000000000E+09 

NU=0.200000000000000, 

     DENSITY=2400.00000000000 ALPHA=0.00000000000000 MDESCRIP=, 

'Concrete' 

* 

CROSS-SECTIO RECTANGULAR NAME=1 WIDTH=1.00000000000000, 

     HEIGHT=0.300000000000000 SC=0.00000000000000 

TC=0.00000000000000, 

     TORFAC=1.00000000000000 SSHEARF=0.00000000000000, 

     TSHEARF=0.00000000000000 ISHEAR=NO SQUARE=NO 

* 

LINE-ELEMDAT BEAM 

@CLEAR 

1 1 1 0  'DEFAULT'  'DEFAULT' 0.00000000000000 0.00000000000000  

'NO', 

     0.00000000000000 0.00000000000000 0.00000000000000 

2 1 1 0  'DEFAULT'  'DEFAULT' 0.00000000000000 0.00000000000000  

'NO', 

     0.00000000000000 0.00000000000000 0.00000000000000 

@ 

* 

FIXITY NAME=SIMPLY_SUPPORTED 

@CLEAR 

 'X-TRANSLATION' 

 'Y-TRANSLATION' 

 'Z-TRANSLATION' 

 'X-ROTATION' 

 'Y-ROTATION' 

 'OVALIZATION' 

 'FLUID-POTENTIAL' 

 'PORE-FLUID-PRESSURE' 

 'TEMPERATURE' 

 'BEAM-WARP' 

@ 

* 

FIXITY NAME=SIMPLY_SUPPORTED_ROLLER 

@CLEAR 

 'Y-TRANSLATION' 

 'Z-TRANSLATION' 

 'X-ROTATION' 

 'Y-ROTATION' 

 'OVALIZATION' 

 'FLUID-POTENTIAL' 

 'PORE-FLUID-PRESSURE' 

 'TEMPERATURE' 

 'BEAM-WARP' 
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@ 

* 

FIXITY NAME=SPRING_TOP 

@CLEAR 

 'X-TRANSLATION' 

 'Z-TRANSLATION' 

 'X-ROTATION' 

 'Y-ROTATION' 

 'Z-ROTATION' 

 'OVALIZATION' 

 'FLUID-POTENTIAL' 

 'PORE-FLUID-PRESSURE' 

 'TEMPERATURE' 

 'BEAM-WARP' 

@ 

* 

FIXBOUNDARY POINTS FIXITY=ALL 

@CLEAR 

1  'SIMPLY_SUPPORTED' 

3  'SIMPLY_SUPPORTED_ROLLER' 

4  'SPRING_TOP' 

@ 

PROPERTY NONLINEAR-K NAME=1 RUPTURE=NO 

@CLEAR 

-1.00000000000000 -300000.000000000 

0.00000000000000 0.00000000000000 

1.00000000000000 0.00000000000000 

@ 

* 

PROPERTYSET NAME=1 K=0.00000000000000 M=0.00000000000000, 

     C=0.00000000000000 NONLINEA=YES NK=1 NM=0 NC=0 

* 

MASSES POINTS 

@CLEAR 

4 0.00000000000000 1000.00000000000 0.00000000000000 

0.00000000000000, 

     0.00000000000000 0.00000000000000 

@ 

* 

EGROUP BEAM NAME=1 SUBTYPE=THREE-D DISPLACE=DEFAULT MATERIAL=1 

RINT=5, 

     SINT=DEFAULT TINT=DEFAULT RESULTS=FORCES INITIALS=NONE, 

     CMASS=DEFAULT RIGIDEND=NONE MOMENT-C=NO RIGIDITY=1, 

     MULTIPLY=1000000.00000000 RUPTURE=ADINA OPTION=NONE, 

     BOLT-TOL=0.00000000000000 DESCRIPT='Beam' SECTION=1, 

     PRINT=DEFAULT SAVE=DEFAULT TBIRTH=0.00000000000000, 

     TDEATH=0.00000000000000 SPOINT=2 BOLTFORC=0.00000000000000, 

     BOLTNCUR=0 TMC-MATE=1 BOLT-NUM=0 BOLT-LOA=0.00000000000000, 

     WARP=NO ENDRELEA=ACCURATE 

* 

EGROUP SPRING NAME=2 PROPERTY=1 RESULTS=FORCES NONLINEA=NO, 

     SKEWSYST=NO OPTION=NONE DESCRIPT='spring' PRINT=DEFAULT, 

     SAVE=DEFAULT TBIRTH=0.00000000000000 

TDEATH=0.00000000000000, 

     6DOF-SPR=NO 

* 

SPRING POINTS 

@CLEAR 

1 4 2 2 2 1  'DEFAULT'  'DEFAULT' 0.00000000000000 

0.00000000000000 

@ 

* 

SUBDIVIDE LINE NAME=1 MODE=LENGTH SIZE=0.100000000000000 

@CLEAR 

2 

@ 

* 

GLINE NODES=2 AUXPOINT=0 NCOINCID=ENDS NCENDS=12, 

     NCTOLERA=1.00000000000000E-05 SUBSTRUC=0 GROUP=1 

MIDNODES=CURVED, 

     XO=0.00000000000000 YO=0.00000000000000 ZO=1.00000000000000, 

     XYZOSYST=SKEW 

@CLEAR 

1 

2 

@ 

* 

TIMESTEP NAME=DEFAULT 

@CLEAR 

1000 0.000500000000000000 

@ 

* 

INITIAL VELOCITIES SUBSTRUC=0 REUSE=1 

@CLEAR 

1 0.00000000000000 -20.0000000000000 0.00000000000000, 

     0.00000000000000 0.00000000000000 0.00000000000000, 

     0.00000000000000 

@ 

* 

EGROUP BEAM NAME=1 SUBTYPE=THREE-D DISPLACE=DEFAULT MATERIAL=1 

RINT=5, 

     SINT=DEFAULT TINT=DEFAULT RESULTS=STRESSES INITIALS=NONE, 

     CMASS=DEFAULT RIGIDEND=NONE MOMENT-C=NO RIGIDITY=1, 

     MULTIPLY=1000000.00000000 RUPTURE=ADINA OPTION=NONE, 

     BOLT-TOL=0.00000000000000 DESCRIPT='Beam' SECTION=1, 

     PRINT=DEFAULT SAVE=DEFAULT TBIRTH=0.00000000000000, 

     TDEATH=0.00000000000000 SPOINT=2 BOLTFORC=0.00000000000000, 

     BOLTNCUR=0 TMC-MATE=1 BOLT-NUM=0 BOLT-LOA=0.00000000000000, 

     WARP=NO ENDRELEA=ACCURATE 

* 

EGROUP SPRING NAME=2 PROPERTY=1 RESULTS=STRESSES NONLINEA=NO, 

     SKEWSYST=NO OPTION=NONE DESCRIPT='spring' PRINT=DEFAULT, 

     SAVE=DEFAULT TBIRTH=0.00000000000000 

TDEATH=0.00000000000000, 

     6DOF-SPR=NO 

**** 

*** ADINA OPTIMIZE=SOLVER FILE=, 

*** 'Q:\1_Projekt\EXJOBB\Daniel_Erik_2014\ADINA\a=0,5\SS-

Beam_a=0, 

*** 5.dat' FIXBOUND=YES OVERWRIT=YES 
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I.2 ADINA-PLOT command file for extracting the result 
NODEPOINT NAME=U1 SUBSTRUC=0 REUSE=1 NODE=1 

* 

NODEPOINT NAME=U2 SUBSTRUC=0 REUSE=1 NODE=2 

* 

NODEPOINT NAME=RA SUBSTRUC=0 REUSE=1 NODE=3 

* 

NODEPOINT NAME=RB SUBSTRUC=0 REUSE=1 NODE=52 

* 

NODEPOINT NAME=Mid SUBSTRUC=0 REUSE=1 NODE=2 

* 

*********CHANGE TO CORRECT COORDINATE FOR EACH 

IMPACT***************** 

* 

ELPOINT NAME=U2_element SUBSTRUC=0 REUSE=1 GROUP=1 ELEMENT=26 

LAYER=1, 

     OPTION=LABEL LABEL=1 

* 

ELLINE NAME=BEAM_COMPLETE SUBSTRUC=0 REUSE=1 GROUP=1 ELEMENT=1, 

     LAYER=1 OPTION=LABEL LABEL=1 FACTOR=1.00000000000000 

@CLEAR 

0 1 1 1 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 2 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 3 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 4 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 5 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 6 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 7 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 8 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 9 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 10 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 11 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 12 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 13 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 14 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 15 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 16 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 17 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 18 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 19 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 20 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 21 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 22 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 23 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 24 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 25 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 26 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 27 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 28 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 29 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 30 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 31 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 32 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 33 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 34 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 35 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 36 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 37 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 38 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 39 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 40 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 41 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 42 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 43 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 44 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 
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     0.00000000000000 1.00000000000000 

0 1 1 45 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 46 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 47 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 48 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 49 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 50 1  'LABEL' 0 1 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

0 1 1 50 1  'LABEL' 0 2 1 0.00000000000000 0.00000000000000, 

     0.00000000000000 1.00000000000000 

@ 

********MOVE NODE 2 TO CORRECT POSITION FOR EACH LOAD 

APPLICATION********* 

* 

NODELINE NAME=BEAM_NODE_LIST SUBSTRUC=0 REUSE=1 NODE=1, 

     FACTOR=1.00000000000000 

@CLEAR 

0 1 3 1.00000000000000 

0 1 4 1.00000000000000 

0 1 5 1.00000000000000 

0 1 6 1.00000000000000 

0 1 7 1.00000000000000 

0 1 8 1.00000000000000 

0 1 9 1.00000000000000 

0 1 10 1.00000000000000 

0 1 11 1.00000000000000 

0 1 12 1.00000000000000 

0 1 13 1.00000000000000 

0 1 14 1.00000000000000 

0 1 15 1.00000000000000 

0 1 16 1.00000000000000 

0 1 17 1.00000000000000 

0 1 18 1.00000000000000 

0 1 19 1.00000000000000 

0 1 20 1.00000000000000 

0 1 21 1.00000000000000 

0 1 22 1.00000000000000 

0 1 23 1.00000000000000 

0 1 24 1.00000000000000 

0 1 25 1.00000000000000 

0 1 26 1.00000000000000 

0 1 27 1.00000000000000 

0 1 2 1.00000000000000 

0 1 28 1.00000000000000 

0 1 29 1.00000000000000 

0 1 30 1.00000000000000 

0 1 31 1.00000000000000 

0 1 32 1.00000000000000 

0 1 33 1.00000000000000 

0 1 34 1.00000000000000 

0 1 35 1.00000000000000 

0 1 36 1.00000000000000 

0 1 37 1.00000000000000 

0 1 38 1.00000000000000 

0 1 39 1.00000000000000 

0 1 40 1.00000000000000 

0 1 41 1.00000000000000 

0 1 42 1.00000000000000 

0 1 43 1.00000000000000 

0 1 44 1.00000000000000 

0 1 45 1.00000000000000 

0 1 46 1.00000000000000 

0 1 47 1.00000000000000 

0 1 48 1.00000000000000 

0 1 49 1.00000000000000 

0 1 50 1.00000000000000 

0 1 51 1.00000000000000 

0 1 52 1.00000000000000 

@ 

*****************************************************************

********* 

* 

FRAME LOWER=0.00000000000000 UPPER=0.00000000000000 ROTATION=0, 

     LINE=YES SIZE=SURFACE ISOSIZE=4.00000000000000, 

     WIDTH=100.000000000000 HEIGHT=100.000000000000, 

     XOFFSET=0.00000000000000 YOFFSET=0.00000000000000 INDEX=YES, 

     CUTMARK=NO WINDOW=PREVIOUS UNITLOWE=PERCENT 

UNITUPPE=PERCENT, 

     UNITWIDT=PERCENT UNITHEIG=PERCENT UNITXOFF=PERCENT, 

     UNITYOFF=PERCENT UPDATE=NO ASPECT=1.33333337306976, 

     CHARSIZE=0.250000000000000 UNITCHAR=CM HSTRING=' ', 

     ADINATEX=VERTICAL 

* 

RESPONSESHOW XVARIABL=TIME XPOINT=U2_element 

YVARIABL=NODAL_MOMENT-S, 

     YPOINT=U2_element RESPRANG=DEFAULT XSMOOTHI=DEFAULT, 

     YSMOOTHI=DEFAULT XRESULTC=DEFAULT YRESULTC=DEFAULT 

GRAPH=YES, 

     CURVEDEP=DEFAULT XAXIS=DEFAULT_X YAXIS=DEFAULT_Y, 

     GRAPHDEP=DEFAULT SUBFRAME=DEFAULT LIST=NO 

* 

SAVEBMP FILENAME='Results\Moment_u2.jpg', 

     SIZE=FRAME SCALE=1.00000000000000 XSIZE=640 YSIZE=480 

* 

FRAME LOWER=0.00000000000000 UPPER=0.00000000000000 ROTATION=0, 

     LINE=YES SIZE=SURFACE ISOSIZE=4.00000000000000, 

     WIDTH=100.000000000000 HEIGHT=100.000000000000, 

     XOFFSET=0.00000000000000 YOFFSET=0.00000000000000 INDEX=YES, 

     CUTMARK=NO WINDOW=PREVIOUS UNITLOWE=PERCENT 

UNITUPPE=PERCENT, 

     UNITWIDT=PERCENT UNITHEIG=PERCENT UNITXOFF=PERCENT, 

     UNITYOFF=PERCENT UPDATE=NO ASPECT=1.33333337306976, 

     CHARSIZE=0.250000000000000 UNITCHAR=CM HSTRING=' ', 

     ADINATEX=VERTICAL 

* 

RESPONSESHOW XVARIABL=TIME XPOINT=U2_element 

YVARIABL=NODAL_FORCE-T, 
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     YPOINT=U2_element RESPRANG=DEFAULT XSMOOTHI=DEFAULT, 

     YSMOOTHI=DEFAULT XRESULTC=DEFAULT YRESULTC=DEFAULT 

GRAPH=YES, 

     CURVEDEP=DEFAULT XAXIS=DEFAULT_X YAXIS=DEFAULT_Y, 

     GRAPHDEP=DEFAULT SUBFRAME=DEFAULT LIST=NO 

* 

SAVEBMP FILENAME='Results\Force_u2.jpg', 

     SIZE=FRAME SCALE=1.00000000000000 XSIZE=640 YSIZE=480 

* 

FRAME LOWER=0.00000000000000 UPPER=0.00000000000000 ROTATION=0, 

     LINE=YES SIZE=SURFACE ISOSIZE=4.00000000000000, 

     WIDTH=100.000000000000 HEIGHT=100.000000000000, 

     XOFFSET=0.00000000000000 YOFFSET=0.00000000000000 INDEX=YES, 

     CUTMARK=NO WINDOW=PREVIOUS UNITLOWE=PERCENT 

UNITUPPE=PERCENT, 

     UNITWIDT=PERCENT UNITHEIG=PERCENT UNITXOFF=PERCENT, 

     UNITYOFF=PERCENT UPDATE=NO ASPECT=1.33333337306976, 

     CHARSIZE=0.250000000000000 UNITCHAR=CM HSTRING=' ', 

     ADINATEX=VERTICAL 

* 

RESPONSESHOW XVARIABL=TIME XPOINT=U1 YVARIABL=Y-DISPLACEMENT 

YPOINT=U1, 

     RESPRANG=DEFAULT XSMOOTHI=DEFAULT YSMOOTHI=DEFAULT, 

     XRESULTC=DEFAULT YRESULTC=DEFAULT GRAPH=YES 

CURVEDEP=DEFAULT, 

     XAXIS=DEFAULT_X YAXIS=DEFAULT_Y GRAPHDEP=DEFAULT, 

     SUBFRAME=DEFAULT LIST=NO 

* 

SAVEBMP FILENAME='Results\u1_graph.jpg', 

     SIZE=FRAME SCALE=1.00000000000000 XSIZE=640 YSIZE=480 

* 

FRAME LOWER=0.00000000000000 UPPER=0.00000000000000 ROTATION=0, 

     LINE=YES SIZE=SURFACE ISOSIZE=4.00000000000000, 

     WIDTH=100.000000000000 HEIGHT=100.000000000000, 

     XOFFSET=0.00000000000000 YOFFSET=0.00000000000000 INDEX=YES, 

     CUTMARK=NO WINDOW=PREVIOUS UNITLOWE=PERCENT 

UNITUPPE=PERCENT, 

     UNITWIDT=PERCENT UNITHEIG=PERCENT UNITXOFF=PERCENT, 

     UNITYOFF=PERCENT UPDATE=NO ASPECT=1.33333337306976, 

     CHARSIZE=0.250000000000000 UNITCHAR=CM HSTRING=' ', 

     ADINATEX=VERTICAL 

* 

RESPONSESHOW XVARIABL=TIME XPOINT=U2 YVARIABL=Y-DISPLACEMENT 

YPOINT=U2, 

     RESPRANG=DEFAULT XSMOOTHI=DEFAULT YSMOOTHI=DEFAULT, 

     XRESULTC=DEFAULT YRESULTC=DEFAULT GRAPH=YES 

CURVEDEP=DEFAULT, 

     XAXIS=DEFAULT_X YAXIS=DEFAULT_Y GRAPHDEP=DEFAULT, 

     SUBFRAME=DEFAULT LIST=NO 

* 

SAVEBMP FILENAME='Results\u2_graph.jpg', 

     SIZE=FRAME SCALE=1.00000000000000 XSIZE=640 YSIZE=480 

* 

FRAME LOWER=0.00000000000000 UPPER=0.00000000000000 ROTATION=0, 

     LINE=YES SIZE=SURFACE ISOSIZE=4.00000000000000, 

     WIDTH=100.000000000000 HEIGHT=100.000000000000, 

     XOFFSET=0.00000000000000 YOFFSET=0.00000000000000 INDEX=YES, 

     CUTMARK=NO WINDOW=PREVIOUS UNITLOWE=PERCENT 

UNITUPPE=PERCENT, 

     UNITWIDT=PERCENT UNITHEIG=PERCENT UNITXOFF=PERCENT, 

     UNITYOFF=PERCENT UPDATE=NO ASPECT=1.33333337306976, 

     CHARSIZE=0.250000000000000 UNITCHAR=CM HSTRING=' ', 

     ADINATEX=VERTICAL 

* 

RESPONSESHOW XVARIABL=TIME XPOINT=RA YVARIABL=Y-REACTION 

YPOINT=RA, 

     RESPRANG=DEFAULT XSMOOTHI=DEFAULT YSMOOTHI=DEFAULT, 

     XRESULTC=DEFAULT YRESULTC=DEFAULT GRAPH=YES 

CURVEDEP=DEFAULT, 

     XAXIS=DEFAULT_X YAXIS=DEFAULT_Y GRAPHDEP=DEFAULT, 

     SUBFRAME=DEFAULT LIST=NO 

* 

SAVEBMP FILENAME='Results\R_graph.jpg', 

     SIZE=FRAME SCALE=1.00000000000000 XSIZE=640 YSIZE=480 

* 

FRAME LOWER=0.00000000000000 UPPER=0.00000000000000 ROTATION=0, 

     LINE=YES SIZE=SURFACE ISOSIZE=4.00000000000000, 

     WIDTH=100.000000000000 HEIGHT=100.000000000000, 

     XOFFSET=0.00000000000000 YOFFSET=0.00000000000000 INDEX=YES, 

     CUTMARK=NO WINDOW=PREVIOUS UNITLOWE=PERCENT 

UNITUPPE=PERCENT, 

     UNITWIDT=PERCENT UNITHEIG=PERCENT UNITXOFF=PERCENT, 

     UNITYOFF=PERCENT UPDATE=NO ASPECT=1.33333337306976, 

     CHARSIZE=0.250000000000000 UNITCHAR=CM HSTRING=' ', 

     ADINATEX=VERTICAL 

* 

RESPONSESHOW XVARIABL=TIME XPOINT=mid YVARIABL=Y-DISPLACEMENT 

YPOINT=mid, 

     RESPRANG=DEFAULT XSMOOTHI=DEFAULT YSMOOTHI=DEFAULT, 

     XRESULTC=DEFAULT YRESULTC=DEFAULT GRAPH=YES 

CURVEDEP=DEFAULT, 

     XAXIS=DEFAULT_X YAXIS=DEFAULT_Y GRAPHDEP=DEFAULT, 

     SUBFRAME=DEFAULT LIST=NO 

* 

SAVEBMP FILENAME='Results\u_midpoint_graph.jpg', 

     SIZE=FRAME SCALE=1.00000000000000 XSIZE=640 YSIZE=480 

* 

FRAME LOWER=0.00000000000000 UPPER=0.00000000000000 ROTATION=0, 

     LINE=YES SIZE=SURFACE ISOSIZE=4.00000000000000, 

     WIDTH=100.000000000000 HEIGHT=100.000000000000, 

     XOFFSET=0.00000000000000 YOFFSET=0.00000000000000 INDEX=YES, 

     CUTMARK=NO WINDOW=PREVIOUS UNITLOWE=PERCENT 

UNITUPPE=PERCENT, 

     UNITWIDT=PERCENT UNITHEIG=PERCENT UNITXOFF=PERCENT, 

     UNITYOFF=PERCENT UPDATE=NO ASPECT=1.33333337306976, 

     CHARSIZE=0.250000000000000 UNITCHAR=CM HSTRING=' ', 

     ADINATEX=VERTICAL 

* 

RESPONSESHOW XVARIABL=TIME XPOINT=RB YVARIABL=Y-REACTION 

YPOINT=RB, 

     RESPRANG=DEFAULT XSMOOTHI=DEFAULT YSMOOTHI=DEFAULT, 

     XRESULTC=DEFAULT YRESULTC=DEFAULT GRAPH=YES 

CURVEDEP=DEFAULT, 

     XAXIS=DEFAULT_X YAXIS=DEFAULT_Y GRAPHDEP=DEFAULT, 

     SUBFRAME=DEFAULT LIST=NO 

* 
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SAVEBMP FILENAME='Results\RB_graph.jpg', 

     SIZE=FRAME SCALE=1.00000000000000 XSIZE=640 YSIZE=480 

* 

FRAME LOWER=0.00000000000000 UPPER=0.00000000000000 ROTATION=0, 

     LINE=YES SIZE=SURFACE ISOSIZE=4.00000000000000, 

     WIDTH=100.000000000000 HEIGHT=100.000000000000, 

     XOFFSET=0.00000000000000 YOFFSET=0.00000000000000 INDEX=YES, 

     CUTMARK=NO WINDOW=PREVIOUS UNITLOWE=PERCENT 

UNITUPPE=PERCENT, 

     UNITWIDT=PERCENT UNITHEIG=PERCENT UNITXOFF=PERCENT, 

     UNITYOFF=PERCENT UPDATE=NO ASPECT=1.33333337306976, 

     CHARSIZE=0.250000000000000 UNITCHAR=CM HSTRING=' ', 

     ADINATEX=VERTICAL 

* 

MESHPLOT MESHSTYL=DEFAULT ZONENAME=WHOLE_MODEL RESPONSE=DEFAULT, 

     MODELDEP=DEFAULT VIEW=DEFAULT MESHWIND=DEFAULT 

PLOTAREA=DEFAULT, 

     SUBFRAME=DEFAULT ELDEPICT=DEFAULT NODEDEPI=DEFAULT, 

     BOUNDEPI=DEFAULT GPDEPICT=DEFAULT GLDEPICT=DEFAULT, 

     GSDEPICT=DEFAULT GVDEPICT=DEFAULT MESHREND=DEFAULT, 

     MESHANNO=DEFAULT FRONDEPI=DEFAULT CONDEPIC=DEFAULT, 

     VSDEPICI=DEFAULT CRACKDEP=DEFAULT RESULTCO=DEFAULT, 

     CUTSURFA=DEFAULT ELFACESE=0 ELEDGESE=0 

* 

MOVIESHOOT LOAD-STEP TSTART=EARLIEST TEND=LATEST FRAMES=100 

MOVIENUM=1 

* 

SAVEAVI FILENAME='Results\vid.avi', 

     SPEED=5 XSIZE=640 YSIZE=480 MOVIENUM=1 SIZE=FRAME, 

     SCALE=1.00000000000000 COLORBIT=16 

* 

RESPRANGE LOAD-STEP NAME=LISTA TSTART=EARLIEST 

TEND=0.200000000000000, 

     INCREMEN=TINCREMENT TINCREME=0.0100000000000000 

* 

Filelist o=File f='Results\Moment+shear.text' 

LINELIST LINENAME=BEAM_COMPLETE SMOOTHIN=DEFAULT 

RESULTCO=DEFAULT, 

     RESPOPTI=RESPRANGE RESPONSE=DEFAULT RESPRANG=LISTA, 

     VARIABLE=NODAL_MOMENT-S NODAL_FORCE-T 

* 

Filelist o=File f='Results\max_moment+shear_time.text' 

LINEMAX LINENAME=BEAM_COMPLETE TYPE=ABSMAX NUMBER=1 

SMOOTHIN=DEFAULT, 

     RESULTCO=DEFAULT RESPOPTI=RESPRANGE RESPONSE=DEFAULT, 

     RESPRANG=DEFAULT VARIABLE=NODAL_MOMENT-S NODAL_FORCE-T 

* 

Filelist o=File f='Results\Deflection_time.text' 

LINELIST LINENAME=BEAM_NODE_LIST SMOOTHIN=DEFAULT 

RESULTCO=DEFAULT, 

     RESPOPTI=RESPRANGE RESPONSE=DEFAULT RESPRANG=LISTA, 

     VARIABLE=Y-DISPLACEMENT 

* 

Filelist o=File f='Results\max_deflection_time.text' 

LINEMAX LINENAME=BEAM_NODE_LIST TYPE=ABSMAX NUMBER=1 

SMOOTHIN=DEFAULT, 

     RESULTCO=DEFAULT RESPOPTI=RESPRANGE RESPONSE=DEFAULT, 

     RESPRANG=DEFAULT VARIABLE=Y-DISPLACEMENT 

* 

Filelist o=File f='Results\Ra.text' 

POINTLIST POINTNAM=RA SMOOTHIN=DEFAULT RESULTCO=DEFAULT, 

     RESPOPTI=RESPRANGE RESPONSE=DEFAULT RESPRANG=DEFAULT, 

     VARIABLE=Y-REACTION 

* 

Filelist o=File f='Results\Rb.text' 

POINTLIST POINTNAM=RB SMOOTHIN=DEFAULT RESULTCO=DEFAULT, 

     RESPOPTI=RESPRANGE RESPONSE=DEFAULT RESPRANG=DEFAULT, 

     VARIABLE=Y-REACTION 

* 

Filelist o=File f='Results\u_topspring.text' 

POINTLIST POINTNAM=U1 SMOOTHIN=DEFAULT RESULTCO=DEFAULT, 

     RESPOPTI=RESPRANGE RESPONSE=DEFAULT RESPRANG=DEFAULT, 

     VARIABLE=Y-DISPLACEMENT 

* 

Filelist o=File f='Results\u_bottomspring.text' 

POINTLIST POINTNAM=U2 SMOOTHIN=DEFAULT RESULTCO=DEFAULT, 

     RESPOPTI=RESPRANGE RESPONSE=DEFAULT RESPRANG=DEFAULT, 

     VARIABLE=Y-DISPLACEMENT 

* 

Filelist o=File f='Results\u_midpoint.text' 

POINTLIST POINTNAM=mid SMOOTHIN=DEFAULT RESULTCO=DEFAULT, 

     RESPOPTI=RESPRANGE RESPONSE=DEFAULT RESPRANG=DEFAULT, 

     VARIABLE=Y-DISPLACEMENT 

* 

Filelist o=File f='Results\Moment_impactnode_t.text' 

POINTLIST POINTNAM=U2_element SMOOTHIN=DEFAULT RESULTCO=DEFAULT, 

     RESPOPTI=RESPRANGE RESPONSE=DEFAULT RESPRANG=DEFAULT, 

     VARIABLE=NODAL_MOMENT-S 

* 

Filelist o=File f='Results\Force_impactnode_t.text' 

POINTLIST POINTNAM=U2_element SMOOTHIN=DEFAULT RESULTCO=DEFAULT, 

     RESPOPTI=RESPRANGE RESPONSE=DEFAULT RESPRANG=DEFAULT, 

     VARIABLE=NODAL_FORCE-T 

* 

********Moment 

envelope*************************************************** 

* 

RESPONSE ENVELOPE NAME=ENVELOPE_MIN TYPE=MINIMUM OPTION=RANGE, 

     TSTART=EARLIEST TEND=LATEST INCREMEN=AVAILABLE, 

     TINCREME=1.00000000000000 NSTEP=1 INTERPOL=NO NSKIP=0 

* 

Filelist o=File f='Results\Moment_env_min.text' 

LINEEXCEED LINENAME=BEAM_COMPLETE TYPE=MINIMUM 

VALUE=0.00000000000000, 

     SMOOTHIN=DEFAULT RESULTCO=DEFAULT RESPOPTI=RESPONSE, 

     RESPONSE=ENVELOPE_MIN RESPRANG=DEFAULT 

VARIABLE=NODAL_MOMENT-S 

* 

RESPONSE ENVELOPE NAME=ENVELOPE_ABSMAX TYPE=ABSMAX OPTION=RANGE, 

     TSTART=EARLIEST TEND=LATEST INCREMEN=AVAILABLE, 

     TINCREME=1.00000000000000 NSTEP=1 INTERPOL=NO NSKIP=0 

* 

Filelist o=File f='Results\Moment_env_absmax.text' 

LINEEXCEED LINENAME=BEAM_COMPLETE TYPE=ABSMAX 

VALUE=0.00000000000000, 
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     SMOOTHIN=DEFAULT RESULTCO=DEFAULT RESPOPTI=RESPONSE, 

     RESPONSE=ENVELOPE_ABSMAX RESPRANG=DEFAULT, 

     VARIABLE=NODAL_MOMENT-S 

* 

*****Shear force 

envelope************************************************* 

* 

RESPONSE ENVELOPE NAME=ENVELOPE_MAX TYPE=MAXIMUM OPTION=RANGE, 

     TSTART=EARLIEST TEND=LATEST INCREMEN=AVAILABLE, 

     TINCREME=1.00000000000000 NSTEP=1 INTERPOL=NO NSKIP=0 

* 

Filelist o=File f='Results\Shear_env_min.text' 

LINEEXCEED LINENAME=BEAM_COMPLETE TYPE=MINIMUM 

VALUE=0.00000000000000, 

     SMOOTHIN=DEFAULT RESULTCO=DEFAULT RESPOPTI=RESPONSE, 

     RESPONSE=ENVELOPE_MIN RESPRANG=DEFAULT VARIABLE=NODAL_FORCE-

T 

* 

Filelist o=File f='Results\Shear_env_max.text' 

LINEEXCEED LINENAME=BEAM_COMPLETE TYPE=MAXIMUM 

VALUE=0.00000000000000, 

     SMOOTHIN=DEFAULT RESULTCO=DEFAULT RESPOPTI=RESPONSE, 

     RESPONSE=ENVELOPE_MAX RESPRANG=DEFAULT VARIABLE=NODAL_FORCE-

T 

* 

Filelist o=File f='Results\Shear_env_absmax.text' 

LINEEXCEED LINENAME=BEAM_COMPLETE TYPE=ABSMAX 

VALUE=0.00000000000000, 

     SMOOTHIN=DEFAULT RESULTCO=DEFAULT RESPOPTI=RESPONSE, 

     RESPONSE=ENVELOPE_ABSMAX RESPRANG=DEFAULT 

VARIABLE=NODAL_FORCE-T 

**************************************************************** 
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