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Structural Response of Reinforced Concrete Beams Subjected to Explosions 

Time dependent transformation factors, support reactions and distribution of section 

forces 

Master of Science Thesis in the Master’s Programme Structural Engineering and 

Building Performance Design  

SEBASTIAN ANDERSSON 

HAMPUS KARLSSON 

Department of Civil and Environmental Engineering 

Division of Structural Engineering 

Concrete Structures 

Chalmers University of Technology 

ABSTRACT 

A shock wave in air resulting from an explosion is a highly impulsive load. A 

structural element subjected to an impulse load will behave differently than when 

subjected to a static load. This Master's thesis uses finite element analyses and 

simplified single degree of freedom systems to describe the structural response for a 

simply supported reinforced concrete beam subjected to an impulse load.  

Theory about design of reinforced concrete members and how the member can be 

described with a single degree of freedom system, denoted SDOF system, are 

presented. Further, the magnitude and distribution of section forces are investigated 

for an impulse loaded reinforced concrete beam and how well these can be described 

different methods. Special attention is given to the phenomenon dynamic direct shear 

failure and how this is considered in Swedish and American design codes.  

The transformation factors used to transform a structural member into an SDOF 

system come from an assumed deformation shape. The deformation shape is initially 

governed by wave propagation and the theoretical transformation factors do not 

describe the response fully adequate. Therefore, the concept of time dependent 

transformation factors is introduced. This concept, require an energy preservation 

method that is presented in this thesis, and makes the deformations in the SDOF 

approach and the finite element agree very well. 

The use of an equivalent static load is shown to provide section forces on the unsafe 

side. It is also shown that their distribution cannot be adequately described with an 

equivalent static load.  

The initial value of the support reaction may obtain a high magnitude when the 

structural member is subjected to a highly impulsive impulse load. This is treated in 

the literature in different ways. The current Swedish approach overestimates the 

support reaction considerably and the best approach is to use obtained time dependent 

transformation factors and a varying stiffness. Nevertheless, a more general approach 

on how to describe this is needed to describe the exact peak value and the time of its 

appearance. The SDOF model for design against direct shear is vague and further 

study is needed in order to treat this problem. 

Key words:   Explosion, impulse load, SDOF, direct shear, finite element analysis, 

concrete, dynamic response, time dependent transformation factors, support reaction
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Strukturell respons för armerade betongbalkar utsatta för explosioner 

Tidsberoende transformationsfaktorer, reaktionskrafter och fördelning av 

sektionskrafter  

Examensarbete inom mastersprogrammet Structural Engineering and Building 

Performance Design  

SEBASTIAN ANDERSSON 

HAMPUS KARLSSON 

Institutionen för bygg- och miljöteknik 

Avdelning för konstruktionsteknik 

Betongbyggnad 

Chalmers tekniska högskola 

SAMMANFATTNING 

En stötvåg i luft från en explosion är en impulsiv last. En konstruktion som är utsatt 

för en impulsiv last kommer bete sig annorlunda jämfört med en statisk last. Det här 

examensarbetet behandlar fritt upplagda armerade betongbalkar som är utsatta för en 

impulsiv last. Detta görs genom FE analys och förenklade enfrihetsgradsmetoder. 

Teori om hur armerade betongbalkar dimensioneras och hur de kan bli förenklade till 

enfrihetsgradssystem presenteras. Vidare undersöks storlek och fördelning på 

sektionskrafter och hur väl dessa kan bli förklarade med förenklade metoder. Speciellt 

fokus är lagt på fenomenet dynamic direct shear failure och hur detta dimensioneras 

för i svensk och amerikansk designkod.  

Transformationsfaktorer som används för att göra om ett konstruktionselement till ett 

enfrihetsgradssystem kommer från en antagen utböjningsform. I ett tidigt skede beror 

utböjningsformen på vågutbredning vilket gör att de teoretiska värdena på 

transformationsfaktorerna inte är tillräckligt korrekta. Därför har tidsberoende 

transformationsfaktorer introducerats. Energin måste dock bevaras och ett 

tillvägagångssätt är presenterat i rapporten. Metoden som använts gör att 

deformationen i FE analysen och enfrihetsgradssystemet överensstämmer väldigt väl. 

En statisk ekvivalent last undervärderar sektionskrafter nämnvärt. Även den 

tillhörande fördelningen kan inte beskrivas med en statisk ekvivalent last. 

Stödreaktionen är väldigt hög initialt. Det beaktas av olika dimensioneringsregler på 

olika sätt. Dagens svenska metod övervärderar stödreaktionen och den bästa metoden 

är att använda tidsberoende transformationsfaktorer och en varierande styvhet. En mer 

exakt metod för att bestämma storleken och tidpunkten för den initiala toppen måste 

dock hittas.  

Enfrihetsgradssystem för direct shear failure behöver utredas mer för att kunna 

tillämpas. De undersökta balkarna hade gått sönder i böjning om direct shear failure 

inträffar i ett tidigt skede. 

Nyckelord: Explosion, impulsiv last, enfrihetsgradssystem, direct shear, finit element 

analys, armerad betong, dynamisk, tidsberoende transformationsfaktorer, 

stödreaktion 
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1 Introduction 

1.1 Background 

An explosion occurs when there is a sudden expansion of matter. This rapid 

expansion creates a shock wave that in turn results in an impulse load acting on the 

surroundings. Explosions can either be intentional or accidental; an act of war or 

terror versus an industrial or traffic accident for example. The consequences of such 

an event can be devastating to nearby structures and people. As they are spontaneous 

events and difficult to predict it is important to build defence structures and to adapt 

the design of potentially targeted buildings so that they can withstand this type of 

extreme loading. Explosions have recently struck Nordic capital cities, Oslo in July 

2011 and Stockholm in December 2010. 

Explosion shock waves are highly impulsive and dynamic loads. They are intense and 

occur over a very short period of time, typically a few milliseconds. The response of a 

structure to a dynamic load varies considerably to that of a static load. The dynamic 

response is more difficult to explain and therefore simplified approaches are often 

used in order to explain the behaviour of the structure. A well established method is to 

transform the structural element into an equivalent single degree of freedom system, 

often referred to as an SDOF system, by choosing a system point in the structure. 

Transformation factors are used to relate the element’s mass, resistance, damping and 

external force to the corresponding equivalent parameters in the simplified SDOF 

system. Subsequently, the maximum moments and shear forces acting on the structure 

can be found.  

The material behaviour will significantly influence the resistance of a structure. 

Reinforced concrete has been proven to perform well when subjected to explosions 

due to its high mass and ductile behaviour, which dissipates a large amount of energy. 

However, it has a complex stress-strain relationship since the concrete cracks and the 

steel reinforcement yields. Therefore, the relationship is often idealised to linear 

elastic, ideal plastic and elasto-plastic relationships. The same idealisations can be 

used for other materials but this thesis will largely focus on reinforced concrete 

members. 

This work is a continuation of three previous Master’s theses. Nyström (2006), Ek and 

Mattsson (2009), and Augustsson and Härenstam (2010) dealt with the response of 

reinforced concrete beams and slabs to an explosion by using simplified approaches, 

where the main focus was bending response. The results from the simplified design 

approach were compared to more detailed finite element methods where it was 

concluded that the equivalent SDOF approach using transformation factors could be 

somewhat misleading. This was especially the case for plastic and elasto-plastic 

analyses. More investigations will therefore be carried out in order to explain the 

influence of transformation factors and how the member can be designed for moment 

and shear force.  

Moment and shear force distributions in an impulse loaded structure differ 

significantly compared to the expected static distributions. A phenomenon that has 

been observed in some reinforced concrete structures subjected to impulse loads is 

called direct shear. Short after detonation, often within the first millisecond, large 

shear forces will occur close to the supports, which will cause an almost vertical crack 

propagating through the member. This does not occur when the same structure is 

subjected to a static load. Knowledge about dynamic direct shear failure is limited. 
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The Swedish Fortifications Agency (in Swedish; Fortifikationsverket) has recently 

given out a handbook, which treats direct shear failure briefly and MSB, 

(Myndigheten för samhällsskydd och beredskap), Swedish Civil Contingencies 

Agency, requests to know more about it in order to take it into account in design if 

needed. 

 

1.2 Aim 

The aim of this Master’s thesis is to complement the analyses carried out in previous 

Master’s theses and provide a more comprehensive understanding about design 

considerations for structures subjected to explosions. The report considers two main 

areas: 

1) The moment and shear force caused by an impulse load was studied in detail 

for reinforced concrete beams. The thesis also investigates and presents how 

the shear force can be determined and designed for. Additional attention was 

given to the phenomenon of direct shear failure and how it can be taken into 

account in design with regard to explosions. 

 

2) Transformation factors have been proven to be somewhat misleading 

according to Ek and Mattsson (2009) and Augustsson and Härenstam (2010). 

This thesis presents how these differ from more detailed finite element 

analyses and how can it be taken into account in a simplified design approach. 

 

1.3 Method 

A literature review of previous work in the area of interest was carried out in order to 

understand and generally describe explosions, impulse loading and design 

methodology. The literature review was extended to include how shear force and the 

direct shear phenomenon behave and how they are taken into account today in 

Swedish and American design code. The American design approach against 

explosions is chosen as a reference since it is one of the most comprehensive methods. 

Investigations were carried out by performing detailed analyses in the commercial 

finite element software ADINA, which is suitable for dynamic analyses. These 

analyses are the reference for simplified methods and are assumed to represent the 

real behaviour of a structure subjected to an explosion. It is important to realise the 

software’s limitations and restrictions. The result of the finite element analyses was 

therefore critically been evaluated by questioning the procedure and the modelling 

assumptions made in the analyses. Several analyses with different input data were 

performed in order to obtain a reliable result, which is more general to any explosion 

situation. 

The simplified approaches were used with three material idealisations including, 

linear elastic, ideal plastic and elasto-plastic. The first two are used in order to 

describe the more complicated elasto-plastic material description, which is the most 

realistic material response despite overlooking strain hardening. 
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In this study an SDOF approach with different material responses was compared with 

their assumed real behaviour. It was also updated in order to correlate better by 

investigating the transformation factors. The design moment and shear force on the 

structure according to design codes are compared to the real loads and the rightness is 

evaluated. The issues of time dependent transformation factors were also addressed to 

consider possible effects of the loads on the structure. 

 

1.4 Limitations 

The analyses only treat reinforced concrete beams. It is most common to use concrete 

when designing structures against explosions due to the great mass and the possibility 

of ductile behaviour that consume a lot of energy. However, much of the basic 

equations are applicable to other materials as well. The reinforced concrete stress-

strain relationship will be simplified to a linear elastic response, plastic response and 

elasto-plastic response to reduce the calculation efforts when investigating the shear 

force. This is a relatively good approximation. 

The studies are limited to a simply supported beam. However, some variation of 

cross-section, length and loading will be done to validate the behaviour. No analyses 

will be carried out on slabs but some theory about their behaviour is presented. 

A more detailed analysis of reinforced concrete beams was intended to be used to 

compare with the simplified method by taking both concrete cracking and 

reinforcement yielding into account. However, the detailed model was not completed 

and is therefore only documented in Appendix I in order to not take focus from other 

investigations.  

This thesis will investigate the primary effects of impulse loads induced by shock 

waves in air from an explosion. It will focus on the early behaviour of the structure by 

investigating moment, shear force and displacement. The influence of ground shock 

waves and bomb fragments will be neglected, as will secondary effects such as the 

load from collapsing structures.  

The thesis will not consider the material effect of high strain rates, which act to 

enhance the performance of the structure. By neglecting the positive effects of an 

increasing strain rate the worst case scenario will be studied. It is discussed in the 

American design code and is therefore further described in the Section 2.4.1.5. 

 

1.5 Outline of the report 

Chapter 2 is a theory chapter that covers basic explosion theory, reinforced concrete 

behaviour and design approaches. In addition, dynamic systems are described and the 

transformation from a real structure into an equivalent single degree of freedom 

system is presented.  

Chapter 3 will describe a cross section and some load cases that will be used for 

further studies. Hand calculations will be shown for the example and parameters that 

will be used in further studies are calculated. It will also cover some consideration that 

needs to be taken into account when using finite element modelling of the problem. 
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Chapter 4 is the first result part in this thesis. Here deformation of the structure is 

discussed and this leads to an introduction of time dependent transformation factors 

for the equivalent SDOF system.  

Chapter 5 compares the section forces obtained by the equivalent static load and 

compares these with finite element solutions. The magnitude and distribution are 

discussed. 

Chapter 6 investigates the support reaction, which must be found if direct shear failure 

can be described adequately. Several methods are compared in order to see which is 

the most preferable in design. 

Chapter 7 evaluates the simplified single degree of freedom system for direct shear. 

This is done by constructing iso-damage curves to be able to see whether a bending 

failure or a direct shear failure will occur. 

The different results are discussed individually in every chapter and then followed by 

a more general discussion and conclusion. The Appendix will give a more 

comprehensive picture of the investigations performed in here. In Appendix I, a 

detailed analysis where a solid 2D model taking concrete cracking and reinforcement 

yielding into account is presented. This model had convergence problems when 

subjected to an impulse load and is presented in Appendix I in order to not take focus 

from other investigations.  
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2 Theory 

2.1 Explosions 

An explosion occurs when there is a need of energy release. Energy is released when 

an amount of matter with a certain volume suddenly expands. This sudden release of 

energy manifests in the form of light, sound, temperature and pressure, all of which 

we recognise as an explosion. The pressure will create a shock wave, which will 

spread outwards spherically from the point of energy release, see Figure 2.1. As the 

shock wave advances away from its origin the pressure will decrease rapidly and 

return to the standard atmospheric pressure. The speed of this process is supersonic, 

ending after a few milliseconds. 

 
Explosion centre 

Pressure decreases further 

away from the centre 

 
 

Figure 2.1. An illustration of how the energy propagates outwards from the source 

of the explosion. 

A shock wave can be described through a pressure curve in relation to time. After 

some time, the arrival time, the shock wave front will reach the area of interest and 

subject it to a positive pressure. Because the shockwave forces the air to move as it 

spreads outward from the explosion centre it will create a lack of air behind, causing a 

partial vacuum or negative pressure phase. A principal pressure-time curve of an 

idealised shock wave is illustrated in Figure 2.2. The positive pressure phase is of a 

higher magnitude and has a shorter duration than the negative phase. However, a 

shock wave is according to Johansson and Laine (2007), often simplified by assuming 

a linear decrease of pressure and by neglecting the negative phase due to its relatively 

low amplitude, see Figure 2.3. In order to avoid convergence problems when 

modelling, a very steep inclination is given to the pressure line between arrival time 

and peak pressure.  
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Figure 2.2. An idealised shock wave from an explosion. The high amplitude positive 

phase is followed by a longer negative phase with lower amplitude. 
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Figure 2.3. A simplified shockwave assumes linearly decreasing pressure and 

neglects the negative phase. 

An idealised shock wave progresses through air without being disturbed. However, in 

a real environment the magnitude and spreading of the shock wave will be affected by 

many phenomena. When a shock wave reaches a stiffer object the wave is reflected 

against its surface. This reflection causes some major changes in the properties of the 

shock wave and can result in an increase of pressure up to twenty times larger than 

that of the original wave, see Johansson and Laine (2007).  

There are two main types of reflection: regular reflection and mach reflection. Regular 

reflection is further divided into normal reflection and skewed reflection. Normal 

reflection happens when the incoming wave approaches the surface perpendicularly as 

shown in Figure 2.4. Mach reflection is a special case of skewed reflection and 

happens when the angle between the incoming wave and the reflecting surface is 
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around 40
o
, see Figure 2.4. It is characterised by a part of the shock wave reflecting 

regularly with another part just sliding along the surface.  

 

 

Mach reflection 

Normal reflection 

Reflection surface 

≈40˚ 

Skewed reflection 

90˚  

 

Figure 2.4.  A shock wave is reflected at a surface. Two special cases of reflection 

are normal reflection and Mach reflection. 

Diffraction is another phenomenon that affects the waves’ magnitude and duration, 

describing how the shock wave spreads behind and past a building or an object. This 

is a very complex proceeding and depends on the geometry of the structure. 

Nevertheless, effects of reflections and diffractions are taken into account by applying 

a larger load. Specific consideration of how a wave is reflected will not be taken. For 

more detailed information regarding reflections and diffractions, the reader is referred 

to Johansson and Laine (2007). 

There are empirical expressions for the values of peak pressure and duration from a 

certain explosion at scaled distances, Johansson and Laine (2007). The Swedish Civil 

Contingencies Agency, MSB (2011), has defined a load that a protective facility 

should be able to resist. This is in Johansson and Laine (2007) referred to as an 

archive bomb. The archive bomb consists of 125 kg of high explosive TNT exploding 

in air at a distance of 5 metres from the structure.  

 

2.2 Structural response of reinforced concrete subjected to 

static load 

2.2.1 Beams 

2.2.1.1 Introduction 

Engström (2011a) defines a beam as a linear structural member predominantly loaded 

in flexure. According to Eurocode 2, CEN (2004), the structural member is a beam if 

the span to depth ratio is greater than 3 and the width is less than 5 times the depth of 

the member. The load is transferred to the supports in one direction. There are two 

main design issues that need to be addressed: moment and shear. These are described 

in the following sections. 
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2.2.1.2 Moment 

There are three models to explain the behaviour of concrete beams in Eurocode 2, 

CEN (2004). They are called state I, state II and state III and can be seen in 

Figure 2.5. 
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Figure 2.5. The different states of a concrete section and internal forces. 

State I is when the concrete is not cracked and the behaviour is assumed to be linear 

elastic. It is often reasonable to neglect the influence of reinforcement in this state. 

Thus, the crack resisting moment of the cross-section can be easily determined with 

help of the moment of inertia I, the location of the neutral axis and concrete tensile 

strength.  

Concrete is weak in tension and will crack early. A state II model is often used when a 

cracked concrete beam is studied for low loads. This model assumes linear elastic 

behaviour both for concrete and reinforcement but neglects the influence of cracked 

zones. It is an adequate assumption for the reinforcing steel and for concrete at 

stresses below the steel yield stress. The reinforcement can be converted into an 

equivalent concrete area. Thereafter a moment of inertia for state II can be calculated 

and consequently the moment capacity. 

When the steel begins to yield and the concrete has a non-linear compression strength 

a state III model is used. It takes both concrete cracking and steel reinforcement 

yielding into account. The moment capacity is determined by using moment 

equilibrium. The ultimate capacity can be calculated by assuming reinforcement 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:103 
9 

yielding and ultimate compressive strain in concrete in most outer fibre. Concrete 

stress block factors R and βR are used to approximate the non-linear distribution in 

the concrete with a stress block with a lever arm to the neutral axis. If the steel in a 

state III model has not begun to yield, the concrete will suddenly fail in compression. 

This is brittle failure mode and should be avoided if possible. 

These three different states can be demonstrated in a moment-curvature relationship 

for a continuous concrete beam. A moment curvature relationship can also be 

described with a force displacement relationship where the force is the external force. 

A typical moment-curvature relationship for a small reinforced concrete region can be 

seen in Figure 2.6a. This moment-curvature relationship can be modified due to time 

dependent deformation and creep but will not be considered in this thesis. An 

additional axial force will change this relationship and a specific case for each axial 

force must be obtained.  

The moment-curvature relationship can be simplified from a multi-linear to a bi-linear 

relationship where the slope of the curve is an approximation of the flexural stiffness 

at the different stages. This bi-linear relationship is illustrated in Figure 2.6b. It is 

sufficient to use this simplification if the purpose is to calculate the need for plastic 

rotation according to Engström (2011a). In order to determine the yield bending 

moment and its corresponding curvature at the breakpoint, a state II section analysis 

should be carried out assuming tension reinforcement strain has just reached the yield 

strain. For more detailed description how to do such an analysis the reader is referred 

to Engström (2011a). 
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Figure 2.6. A moment curvature diagram (a) and the corresponding simplified 

moment curvature diagram (b). 

When a section in a reinforced concrete beam cracks, it will suddenly lose stiffness 

and the remaining stiffness will depend on the provided reinforcement. The parts that 

are uncracked will be stiffer and moment redistribution will take place as they attract 

more moment. When the concrete cracks it is often assumed that the cracked part of 

the section cannot take any stress. However, the uncracked concrete between flexural 

cracks will carry some stress with help of the bond between the reinforcement and the 

concrete. This contribution is large just when the concrete cracks but declines as more 
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sections crack. This is referred to as the tension stiffening effect and can be seen in 

Figure 2.7. In further investigations, this thesis does not consider tension stiffening. 

 

With tension 

stiffening 

Without  tension 

stiffening 

State I 

”uncracked” 

State II ”fully cracked” 

r

1  

M 

Mcr - 

 

Figure 2.7. Response of a region with regard to ‘tension stiffening’ in a concrete 

member subjected to pure bending. Based on linear stress-strain 

relationship for both concrete and steel. 

After a while cracking will exist all along the length of the concrete beam and the 

stiffness of each section is merely dependent on the amount of reinforcement. The 

stiffness distribution in the cracked state may be different from that in the uncracked 

state due to uneven reinforcement arrangement within the beam. Loading the beam 

even further will result in reinforcement yielding. The yielding will start in the highest 

stressed section and in this section the steel deforms more than in adjacent sections 

where the steel still have an elastic response. This will create a region with 

concentrated plastic rotation, a so called plastic hinge.  

 

2.2.1.3 Shear 

A load on a concrete structure will in addition to moment give rise to shear stresses 

over the span. The flexural stress and the shear stress can be combined by using 

principal stresses. The concrete will crack if the principal stress exceeds the concrete’s 

tensile strength at any point in the beam. Failure due to shear forces is often brittle and 

happens suddenly. 

For a beam loaded in pure shear this means that the principal stresses will be 45
o
 to 

the longitudinal axis, see Figure 2.8. Eventually, the tension principal stresses exceed 

the tensile strength and a crack will occur. The crack will propagate in the direction of 

the maximum principal stress, i.e. 45
o
 to the longitudinal axis. The crack can either 

start as a flexural crack in the outermost fibre and then develop as a shear crack 

through the depth of concrete, Figure 2.9a, or proceed as a web shear crack in the 

centre of the depth Figure 2.9b.  
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Figure 2.8. Principal stresses due to pure shear. 

 

                (a)                    (b) 

 

Figure 2.9. Different shear cracks: (a) Flexural shear crack and (b) Web shear   

crack. 

A strut-and-tie model can be used to explain the behaviour in shear and is illustrated 

in Figure 2.10. The remaining uncracked concrete compression zone can be 

interpreted as a compression chord, the concrete between the cracks as a compression 

strut and the tensile reinforcement as a tension tie. A shear failure is characterised by 

either slip along the crack or crushing of the compression strut. The resistance against 

compression of a concrete compression strut can be obtained by equilibrium 

equations. 

 

VEd z ≈ 0.9d 
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      (a)       (b) 
 

Figure 2.10. Strut-and-tie model for shear cracks. 

There are four main mechanisms that resist shear failure along a cracked section in a 

flexure reinforced concrete beam, see Figure 2.11. 

1. The crack is not smooth and will therefore have some friction during slip.  

2. Ballast can be trapped in the crack and create mechanical interlocking. 

3. The remaining uncracked concrete compression zone will resist slip along the 

crack.  
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4. Dowel action of the tension reinforcement acts as a significant resistance 

mechanism for large deformations.  

 

(a)             (b)      (c) 

 

Figure 2.11. Mechanisms for crack resistance (a): friction in crack (b), mechanical 

interlocking (b), uncracked compression zone and dowel action of 

tensile reinforcement (c) . 

However, these mechanisms are often not sufficient to rely on when designing against 

shear failure. Firstly, the capacity against concrete crushing and slippage along the 

crack needs to be considered. Shear reinforcement should be introduced if the 

capacity is too low to take tension forces across the cracks. The shear reinforcement 

also ties the main reinforcement bars together and confines the concrete. The designer 

can, within some limitations, decide in which angle the final shear crack will form at 

by designing the shear reinforcement in static load cases.  

Shear reinforcement are commonly made up of stirrups or links perpendicular to the 

axis of the beam, shown in Figure 2.12a, but can also be at an angle. By using inclined 

reinforcement as shown in Figure 2.12b, more shear reinforcement may cross the 

crack, which means that a higher resistance will be obtained. However, the installation 

is more complex and can be more expensive than using more reinforcement. The 

direction of shear forces will alternate in a dynamically loaded system meaning that 

shear reinforcement must be provided in both directions. Lacing, shown in 

Figure 2.12c, can be used for this purpose and provides large rotational capacity 

according to DoD (2008).  

 

(a)             (b)              (c) 

 

Figure 2.12. Different shear reinforcement: (a) stirrups, (b) inclined reinforcement 

and (c) lacing. 
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2.2.2 Slabs 

2.2.2.1 Introduction 

It was initially intended to extend the analyses in this thesis to include slabs. Due to 

this projects time limitation though, it was not possible to analyse slabs further. 

Although the theory presented below will not be further used it shows how a slab can 

be designed and can therefore be of interest.  

A slab is a structural element, often concrete material, which has significantly greater 

width than height, Engström (2011b). The main difference compared to a beam 

element is that transverse action will also have to be considered due to the great 

width.  

A slab can carry the load in one or two directions, often supported by continuous 

walls or beams. A one-way slab can be seen as a wide beam and designed accordingly 

per unit width. However, a two way slab carries the load in two directions and will 

therefore require 3-D analysis in order to obtain proper reaction forces and 

deformations. In this report, slab will refer to a two way slab.  
 

 

Figure 2.13. One-way and two-way slabs. The dotted lines show that the edges are      

simply supported. 

A slab is normally statically indeterminate, which means that the choice of material 

model will influence the result. The material behaviour is the same as for the 

described beam behaviour in Section 2.2.1.2 but stresses will exist in 3 directions. The 

reinforced concrete slab will go from uncracked to cracked, to reinforcement yielding 

and further up to failure as the load is increased. The non-linear behaviour allows the 

designer to decide the behaviour of reinforced concrete by arranging the 

reinforcement accordingly. The reinforcement configuration will change the stiffness 

and the corresponding reactions throughout the sections. 

Since reinforced concrete slabs are rather complex to analyse, models are often 

simplified. There are three methods for designing reinforced concrete in the ultimate 

limit state. The most detailed is a non-linear finite element method with the real 

behaviour. It requires a finite element solution that explicitly models the 

reinforcement yielding and the concrete cracking. The other alternatives are strip and 

yield line method. These assume ideal plastic behaviour and since there is no 

relationship between moment and curvature in the plastic state, the collapse load 

cannot be solved directly. It has to be approached from either upper bound or lower 

bound solutions.  
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2.2.2.2 Strip method 

The strip method is a static method providing lower bound results when analysing 

plastic reinforced concrete slabs (Engström, 2011b). The general idea is to assume a 

moment distribution in the slab in the ultimate limit state and then calculate a 

corresponding maximum load.  

The moment distribution must be in equilibrium in the ultimate limit state. The slab is 

divided into strips in both main directions. The load should be carried by the strips 

together. Any load distribution is allowed as long as the load that is carried by the 

strips together is the same as the actual load on a considered element lying on both 

strips. The slab can be divided into different strip patterns and load distributions, see 

Figure 2.14, which will give different accuracy of the predicted failure load. The more 

the division of the slab looks like the final mechanism, the better the lower bound 

solution will converge with the actual load and the better the behaviour up to failure 

can be estimated. The obtained failure load is however, always underestimated. 

Moments in the main directions are easily obtained on the safe side.  
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Figure 2.14. (a) The easiest and the least accurate strip division. (b) Load division 

with more accurate results. (c) Strip division following the natural load 

dividing lines, which gives the most accurate solution, based on 

Engström (2011b). 

The designer has a great influence when designing a slab. Wrong assumptions of how 

the slab will act will lead to ineffective use and unnecessarily high amount of 

reinforcement. The designer can also decide how the force is resisted at the supports. 

General rules and guidelines for how to choose strips or load division for different 

support conditions can be found in Engström (2011b). It is also explained how 

unrealistic and extreme solutions can be avoided. 
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2.2.2.3 Yield line method 

A yield line is a line with plastic hinges where the deformation has reached the yield 

strain and the moment capacity cannot be further increased. It starts at the most 

stressed point and will, as in theory of plastic hinges, eventually form a mechanism 

and the slab will fail. The yield line method is an upper bound approach and will 

therefore always provide an answer on the unsafe side since the slab will fail in the 

failure mechanism that requires least energy. As a result, it might be a lengthy process 

to find the worst failure mechanism. The development of a potential failure 

mechanism is shown in Figure 2.15 for a slab simply supported on four edges. This 

might not be the most dangerous collapse mechanism. However, the yield line method 

is a very effective approach when analysing existing slabs, where a simple crack 

pattern can be used and a collapse load higher than the actual collapse load will be 

obtained. 

 

(a) (b) (c) 
 

Figure 2.15. Yield line development. The most stressed point starts to yield and the 

yield line will develop until a mechanism is formed 

When the slab deflects, the parts defined by a yield line must fit together. This is a 

kinematic requirement which needs to be fulfilled for all collapse mechanisms. The 

kinematic requirement can be ensured if a yield line or its extension passes through 

the intersection of the adjacent part’s rotational axes. From Figure 2.16 it is clear that 

the yield line between parts 1 and 2 passes through the intersection of rotation axes 

AB and AC. However, the yield line between part 2 and 3 does not intersect the 

intersection between rotation axes AC and BD because the axis never intersect. To 

overcome this, the rotational axes AC and BD are extended to infinity which creates 

and illusion that they intersect. The centre yield line between parts 2 and 3 will 

approach the imaginary intersection and therefore the kinematic requirement can be 

seen as fulfilled.  
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Figure 2.16. The kinematic requirement must be fulfilled for the mechanism to form. 
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2.2.2.4 Shear 

Shear forces in slabs can be resisted in the same manner as for beams in B-zones, 

which are zones where plane sections remain plane under loading,  

Al-Emrani et al. (2008). A strip model can be used to calculate the shear resistance 

and placement of shear reinforcement. Shear failure of a slab supported on continuous 

walls subjected to uniform loading is generally not the governing failure mode since 

the shear force per unit length is relatively small. However, close to concentrated 

forces or supports, i.e. discontinuity regions, great shear forces can occur. A flat slab 

supported on columns for instance. Flat slabs or point load action will not be 

considered in this thesis. Since the shear force occurs in two directions for slabs it is 

rather complex and will not be treated further in this thesis. 

 

2.2.3 Plastic rotation capacity 

Reinforced concrete members have a limited plastic rotation capacity. Therefore, the 

predicted failure mechanism may not occur if sufficient rotation at a plastic hinge 

cannot develop and the member may consequently fail before the full mechanism is 

developed. Experiments of plastic rotation capacity may show low accuracy with 

theoretical models (Johansson and Laine, 2009). Several methods exist for calculating 

the rotational capacity, giving varying results. One potential source of the difference 

in results is that steel properties have changed significantly over the last decades, 

Johansson (1997). The method used in Eurocode 2 can be used to estimate a 

conservative value of the maximum allowed rotation. The method uses a diagram 

taking concrete strength, reinforcement class and the ratio between the compressed 

zone and the effective depth into account, see Figure 2.17. 

 

x / d 

pl  [10 -3 rad] 

 

Figure 2.17. Diagram for evaluating the plastic rotation capacity according to 

Eurocode 2, CEN (2004). 

For low values of the ratio between compressed zone height and the effective depth 

the limitation will be governed by the ultimate steel strain. Concrete crushing strain 

will govern the limitation for higher ratios. For higher values of the ratio than shown 

in the diagram, a sudden abrupt failure will occur.  
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2.3 Simplified material behaviour 

2.3.1 Introduction 

As realised in Section 2.2, reinforced concrete is a complex material. Therefore it can 

be preferable to simplify the behaviour. Three simplified models are used in this 

thesis to describe the behaviour of reinforced concrete: linear elastic, plastic and 

elasto-plastic. The response of these models often gives a reasonably accurate result 

but is seen as potential sources of error in previous Master’s theses, Augustsson and 

Härenstam (2010), Nyström (2006) and Ek and Mattsson (2009). This thesis intended 

to in addition to analyses with simplified material behaviour also model the material’s 

non-linear behaviour, explicitly taking reinforcement yielding and cracking of 

concrete into account. This model was never completed but is documented in 

Appendix I. 

 

2.3.2 Linear elastic 

The simplest way to model the material behaviour is to model it as a linear elastic 

material. By doing so, no permanent deformations will remain after unloading and the 

stress strain relationship will be linear as shown in Figure 2.18. From Hooke’s law, a 

force-displacement relationship can be determined as  

ukR   (2-1) 

where the internal resistance force is denoted R, the stiffness k and the displacement 

u. The stiffness can be found for any structure by relating the deformation to the load 

instead of moment to curvature.  

 

u 

k 

R 

1 

 

Figure 2.18. Linear elastic force-displacement relationship. 

 

2.3.3 Ideal plastic 

When modelling the material with ideal plastic behaviour, the deformations are zero if 

the stress in the material is kept below the yield stress. It also means that the material 

cannot take higher stresses than the yield stress. As soon as the yield stress is reached 

it will start to deform, where the limit of this deformation is in theory infinitely large. 

However, the deformation is in practice limited by the plastic rotation capacity. The 

ideal plastic force-displacement relationship is illustrated in Figure 2.19. Rm is the 

internal resistance force corresponding to the yield stress.  
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Figure 2.19. Ideal plastic force-displacement relationship. 

The relationship can be described with equation (2-2) where F denotes the external 

force and u the displacement. 
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2.3.4 Elasto-plastic 

The simplified elasto-plastic material behaviour is constructed by combining the 

simplified elastic and ideal plastic material responses described in Section 2.3.2 and 

Section 2.3.3 respectively. Thus, a force-displacement relationship can be obtained, 

see Figure 2.20a. Initially, as the load increases the material response has elastic 

behaviour until the material reaches the yield limit. The elastic deformation is 

completely reversible. When the limit is reached, the material cannot take more stress 

and permanently deforms. Therefore, it can be modelled with the ideal plastic 

behaviour. If the structure is unloaded when permanent deformations has developed, 

the unloading curve will be parallel to the elastic curve and when it is loaded again the 

plastic deformations will take place where it last ended, see Figure 2.20b. 
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Figure 2.20. Elasto-plastic (a) force-displacement relationship (b) response while 

loading, unloading and reloading. 
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The elasto-plastic relationship can be written as  
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2.4 Impulse loaded systems 

2.4.1 Definitions of dynamic parameters 

2.4.1.1 Force 

According to Newton’s second law, force F is defined as the product of mass m and 

acceleration a.  

maF   (2-4) 

The force is defined as positive in the direction the acceleration is taking place. It can 

also be recognised that if the mass is increased, the acceleration response due to a 

force F will decrease. 

 

2.4.1.2 Pressure 

Pressure P is defined as a force F acting on an area A.  

A

F
P   (2-5) 

 

2.4.1.3 Momentum and Impulse 

A body with mass m and velocity v has, per definition, a momentum p.  

mvp   (2-6) 

When an external force acts on a body, the body will gain or lose momentum ∆p. This 

change in momentum is defined as the impulse. If a body is subjected to a positive 

force F from time t0 to t1, the velocity will increase and the momentum will increase 

to p1. The new momentum can be calculated by using Newton’s second law 

dttFmvp

t

t


1

0

)(1  (2-7) 

where the right expression is the generated impulse I from a force. 

dttFI

t

t


1

0

)(  (2-8) 
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This represents the area under the force-time graph. The shock wave from an 

explosion is measured in pressure, which is a measurement of force acting on an area. 

Therefore, the impulse can also be written as 

dttPAI

t

t


1

0

)(  (2-9) 

The area under the pressure-time graph is sometimes referred to as the impulse 

intensity i, transferred to the body indicated in Figure 2.21.  

 

i 

Pressure, P 

Time, t 
 

Figure 2.21. Simplified pressure-time curve. 

There are two extreme values of an impulse: infinitely high pressure for an 

infinitesimally short time and lower pressure for an infinitely long time, see 

Figure 2.22. The latter is more similar to a static load. A real impulse load will be 

somewhere in between. The infinitely high pressure during a very short time is called 

the characteristic impulse.  

 

Pressure, P 

Time, t 

∞ 

ik 

Pressure, P 

Time, t 

(a) (b) 

∞ 

Pk 

 

Figure 2.22. Two extreme cases of the pressure impulse: a) Characteristic impulse 

and b) pressure load. 

The response to a more general impulse can be explained by using damage curves. 

Those are curves that show the same damage for different combinations of forces and 

impulses. The concept of damage curves are further discussed and presented in 

Section 2.4.2.7. The characteristic impulse will be used in this thesis to estimate a 

response on the safe side when estimating the external work done. 
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2.4.1.4 Work 

Work equilibrium is a well-established method for analysing the response of a 

structure subjected to an external force. It relies on the law of energy conservation, 

which says that no energy can disappear, just transform. If a force acts on a structure 

the resulting work must be converted into kinetic or potential energy within the 

structure. Therefore, the method puts the external work We, caused by the external 

load, equal to the internal work Wi made by the structure; i.e.  

ie WW   (2-10) 

The external work is force times distance, for example a force that moves an object. It 

can also be an impact where kinetic energy is transferred into potential energy. This is 

more similar to an explosion, where an impulse load strikes a structure and causes it 

to absorb energy by deforming. A characteristic impulse has a very short duration and 

the external energy can therefore be assumed to be the kinetic energy of the structure. 

This means that no energy is resisted as internal work. As soon as the impulse acts for 

a longer time, the structure will absorb some of the energy and the external work done 

will be smaller than for the characteristic impulse. The kinetic energy for a body with 

mass m is 

2

2mv
Ek   (2-11) 

where v is the velocity of the body. By using equation (2-6) and assuming a 

characteristic impulse load, the external work can be described by the kinetic energy 

of the impulse as 

m

I
EW k

ke
2

2

  (2-12) 

Energy is absorbed in the structure by deformation. Consequently, the stiffness of the 

structure and its ability to deform is important for the final response. As described in 

Section 2.3, three idealisations of materials are used. They will behave slightly 

different, and the internal work will be:  

Elastic  
2

2

el
i

ku
W   (2-13) 

Plastic  pli RuW   (2-14) 

plasticElasto  
plepm

elep

i uR
ku

W ,

2

,

2
  (2-15) 

The internal work can be interpreted as the area under the force-displacement curves 

shown in Figure 2.23. 
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Figure 2.23. Three different idealised material relations; linear elastic, ideal plastic       

and elasto-plastic. 

The maximum deformation can later be found from the work equilibrium 

equation (2-10). The deformation in the elasto-plastic model will follow the equation 

(2-13) until the reaction force reaches the yield reaction when the total deformation 

needs to be considered.  

m

I
u c

el   
m

k
where  (2-16) 
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,, 









  eleptot uu ,if   (2-18) 

It is most often preferable to use a ductile material in extreme load situations, as long 

as the obtained displacement can be allowed. The ductile material will deform and 

dissipate more energy. The structure will be damaged through plastic deformation and 

will require reparation. However, this can be overlooked as long as safety is 

guaranteed for involved functions and people. To avoid total collapse and ensure 

safety, the deformation of columns for example must be limited so that they do not 

fail through second order effects. 

 

2.4.1.5 Strain rate 

The closer a structure is to an explosion, the higher the amplitude and the shorter the 

duration of the load. Consequently, structures close to an explosion may be subjected 

to a very intense, impulsive load. In this case the structural response differs 

considerably to a static load response; the design approach must therefore also differ. 

The loading from an explosion can be up to 100 million times faster than a static load. 

The high velocity of an explosion load results in a very high strain rate compared to a 

case with static loading. For static loading the value of strain rate is around 10
-5

 s
-1 

and 

for blast loading somewhere between 10
2
 s

-1
 and 10

3
 s

-1
 as illustrated in Figure 2.24.  
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Figure 2.24. Approximate strain rates for different loadings, based on 

Johansson (2000). 

A change of strain rate can also result in a change of properties for the material. It is 

known that the mechanical properties of concrete are affected by the rate of loading. 

Much research has been done on this subject in order to establish a relationship for the 

Dynamic Increase Factor (DIF), which is the ratio between static strength and 

dynamic strength. These studies show that the increased strain rate also results in an 

increased material strength, as shown in Figure 2.25. The value of the DIF differs a lot 

between tensile and compressive strength and it is also hard to evaluate the different 

test results that cause a large scatter. 
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Figure 2.25. An approximated relationship between the dynamic magnification factor 

and the strain velocity for compressed concrete, based on 

Johansson (2000).  

The effects due to the change in strain rate are divided into two main effects: viscous 

effects for lower strain rates and structural effects for higher strain rates. These effects 

are not discussed in here and for more information the reader is referred to 

Johansson (2000). The change of strain rate is also shown to affect the reinforcement 

steel, which results in some increase of yield and ultimate stress for higher strain 

rates. Strain rate is for example considered in the American design code, DoD (2008) 

but is neglected in this thesis. 

 

2.4.1.6 Wave propagation 

Explosions are rapid processes in which the whole structure may not be active. For 

instance, after an explosion the maximum moment in the front wall of a box structure 

can occur before any of the impacts are realised by the back wall. The information 

travels through a material as both a longitudinal and a transverse wave, see 

Figure 2.26. These are commonly referred to as pressure wave and shear waves. Shear 

waves cannot occur in liquids or gases and are weak in comparison to the pressure 

wave, Laine (2012).  
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Figure 2.26. Waves through a specimen: (I) material at rest (II) pressure wave, (III) 

shear wave, Laine (2012). 

According to Laine (2012) a pressure wave has the velocity 

)1( 2 


E
c p  (2-19) 

where E is the elastic modulus and is the density of the material. This should be the 

case if an axial force acted on the beam. However, the information in a beam loaded 

perpendicularly to its longitudinal axis is more likely to be transferred by transverse 

waves to the support. The speed of a shear wave through a material depends on the 

material’s shear modulus G, Laine (2012). 



G
cs   (2-20) 

where, the shear modulus can be written as  

 


12

E
G  (2-21) 
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2.4.2 Equivalent SDOF system 

2.4.2.1 Introduction 

A single degree of freedom system, abbreviated SDOF, is a convenient model to use 

when analysing dynamically loaded systems. It consists of a body with the mass m 

and a spring with stiffness k, see Figure 2.27. The body is only free to move in one 

direction and the position can be described with one coordinate, Biggs (1964). This 

body is also considered completely rigid with no internal movement within. In reality 

vibrations of a system will always have some damping from internal friction forces 

for example. Therefore, the mass-spring system is often complemented with a damper 

c, which will decrease the amplitude for every oscillation.  

 

(a) (b) 

F(t) 

m 

k 

F(t) 

m 

k c 

 

Figure 2.27. Forced SDOF-systems: a) damped b) undamped. 

The SDOF system can either vibrate freely or be forced by a time-dependent force. If 

the system is subjected to explosion loading, it is initially forced to deform for a very 

short time. After a short time the external force will disappear and the behaviour is 

better represented by a freely vibrating system. Although the shock wave forces the 

system to deform during the first milliseconds, the maximum displacement and 

section forces can often occur much later. This depends on the load and the properties 

of the structure. 

The maximum displacement is of interest and they occur very soon after the load 

arrival. The effect of damping will be low on the first oscillation, where the maximum 

displacement normally occurs but affects the later oscillations more. Therefore, it is 

not necessary to include dampers when considering maximum displacement as a 

result of explosion loads, Johansson and Laine (2009). However, it is important to 

realise that dampers should be included if the continuing state of vibration is to be 

considered. In a real structure it is not likely that the maximum values occur after the 

first oscillation. With that in mind, damping effect is mainly neglected in this thesis 

apart from in the theory section for comprehensiveness. 
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2.4.2.2 Equation of motion 

If a forced damped SDOF system is considered, it is recognised that the displacement 

and velocity will create resisting forces from the damper and the spring. If the body is 

accelerating it will have an inertia force in the accelerating direction according to 

Newton’s second law.   

 

 

F(t) 
m 

ucRdamper


c 

ukRspring   
u  

 

Figure 2.28. Free body diagram of a SDOF-system. 

As velocity and acceleration are the derivative and second derivative, respectively, of 

the displacement with respect to time, the equation of motion can be found as,  

)(tFkuucum    (2-22) 

from established force equilibrium. 

 

2.4.2.3 Transformation into an equivalent SDOF-model 

A structure has multiple degrees of freedom (MDOF) but it can be turned into an 

SDOF system by choosing a “system point” and applying an equivalent mass, a 

damper and a resisting force Biggs (1964). The system point is often chosen as the 

centre point or the point where the displacement is largest, Johansson and Laine 

(2009). The relation between the parameters in the equivalent SDOF system and in 

the MDOF system can be described with transformation factors. 

Transformation factors are derived from an assumed deformation shape u(x), 

Johansson and Laine (2009). They must be chosen with regard to support conditions, 

stiffness distribution, load profile and material model. Therefore, advanced analytical 

solutions may be necessary for complex loading cases and when the stiffness 

distribution varies. Since the factors are directly influenced by the assumed 

deformation shape, they must be individually derived for every structural element and 

load condition. 

Since the damping effect is neglected, see Section 2.4.2.1, three transformation factors 

are of interest when converting a structural element into an equivalent SDOF system 

for impulse loading. They are denoted with a κ with index to the parameter they affect 

mm me   (2-23) 

kk ke   (2-24) 

FF Fe   (2-25) 

Where letters without index are the structural elements real mass, stiffness and force 

respectively and index e stands for equivalent parameters in the SDOF-system. By 

considering energy conservation for the structural element and the corresponding 

equivalent SDOF the factors can be derived. κm comes from the conservation of 
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kinetic energy, κk comes from conservation of internal energy and κF from 

conservation of external energy. According to Biggs (1964) the transformation factors 

for internal and external energy are equal, i.e. 

Fk    (2-26) 

The transformation factors can be found from,  








Lx

x s

m dx
u

xu

L
0

2

2)(1
  (2-27) 








Lx

x s

F dx
u

xu

L
0

)(1
  (2-28) 

the derivation is shown in e.g. Johansson and Laine (2009). By implementing (2-26) 

in equation (2-22), the equation of motion for a structural element can be written as 

)(tFkuucummF    (2-29) 

where 

F

m
mF




 

 (2-30) 

Values of these transformation factors for some different load cases and material 

models for beams and slabs can be seen in Table 2.1, Table 2.2 and Table 2.3.  
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Table 2.1. Transformation factors for a beam subjected to a point load. From 

Johansson and Laine (2009). 

 

Point load on beam element 

 

 
 

 
 

 
 

 

Elastic deformation curve 

M  0.486 0.371 0.445 0.236 

F  1.000 1.000 1.000 1.000 

MF  0.486 0.371 0.446 0.236 

 Plastic deformation curve 

M  0.333 0.333 0.333 0.333 

F  1.000 1.000 1.000 1.000 

MF  0.333 0.333 0.333 0.333 

 

Table 2.2. Transformation factors for a beam subjected to uniform load. From 

Johansson and Laine (2009). 

 

Uniformly distributed load on beam element 

 
 

 

 
 

 
 

 

Elastic deformation curve 

M  0.504 0.406 0.483 0.257 

F  0.640 0.533 0.600 0.400 

MF  0.788 0.762 0.805 0.642 

 Plastic deformation curve 

M  0.333 0.333 0.333 0.333 

F  0.500 0.500 0.500 0.500 

MF  0.667 0.667 0.667 0.667 
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Table 2.3. Transformation factors for a plate subjected to a uniformly distributed 

load, Based on Augustsson and Härenstam (2010). 

 

Uniformly distributed load on slab element 

 

w 

a 

 

 

w 

a 

 

 Elastic deformation curve 

M  0.250  

F  4/
2
  

MF  0.617  

 Plastic deformation curve 

M  (1+a/w)/6 (1+a/w)/6 

F  (1+a/2w)/3 (1+a/2w)/3 

MF  (1+a/w)/(2+a/w) (1+a/w)/(2+a/w) 

 

The transformation factors have a good agreement with reality when an elastic 

response of the structure is assumed, see Augustsson and Härenstam (2010). In the 

aforementioned thesis, significant divergence between hand calculations and FE-

analyses is found for beams assuming ideal plastic behaviour and for plates assuming 

both plastic and elasto-plastic behaviour. This is believed to be influenced by the 

assumption about constant deformation shape and the influence of multi-linear 

response in beams. Moreover, it recommends that more studies on these phenomena 

must be carried out. The problems with transformation factors are also addressed by 

further studies in Chapter 4. 

 

2.4.2.4 Work 

A system in motion is affected by external, internal and kinetic energy, which must 

always be in equilibrium. The transformation factors described in Section 2.4.2.3, 

relate the real energy in the system with the energy in an equivalent SDOF system.  

2

2

sm
k

mv
W


  (2-31) 

sFi RuW 
 

(2-32) 
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sFe FuW 
 

(2-33) 

As shown in section 2.4.1.4, the external energy of a SDOF-system for an impulse 

load can be expressed as: 

e

k
k

SDOF

e
m

I
WW

2

2

  (2-34) 

This assumes no energy is lost from deformation and that the work done by the 

external force is equal to the external all energy will become kinetic energy. The 

problematic part is deciding which mass should be used in equation (2-34). Johansson 

and Laine (2009) have used me=mF ∙m. This results in an equivalent SDOF energy, 

which will only be adequate if external and internal energy levels are compared in the 

SDOF system. However, if the SDOF energy is going to be compared with another 

analysis, it is necessary to consider equation of motion for the equivalent SDOF-

system in its basic form when investigating and comparing energy levels with a FE-

solution, i.e.  

Fkuum FFm    (2-35) 

instead of using the simplified expression in equation (2-29). In order to derive the 

real work for an SDOF model, it is necessary to go back to the definition of impulse 

in Section 0. 

mvdttFI

t

t

 
1

0

)(  (2-36) 

For an equivalent SDOF-system this should be multiplied with the transformation 

factors, i.e.  

 
1

0

)(

t

t

smF

SDOF mvdttFI   (2-37) 

A characteristic impulse means that  

 
1

0

)(

t

t

k lbidttFI  (2-38) 

and hence, the momentum for the equivalent mass in the SDOF-system can be 

expressed as 

kFsm Imv    (2-39) 

and the square of the midpoint velocity can be obtained as 
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 (2-40) 

If this is inserted into equation (2-31) the kinetic energy becomes 

F

mF

k
F

m

k
k

m

I

m

I
E 




 22

2

2

2

  (2-41) 

If this is compared with the expression used by Johansson and Laine (2009), it can be 

seen that the additional term F is not considered and that it would result in a too high 

energy since F < 1.0. Moreover, the internal work is also overestimated since a 

transformation factor is only used on the kinetic energy. 

Calculating the energy incorrectly will not affect the energy balance nor the resulting 

displacement since the transformation factor for the load cancels out when 

considering the individual parts of the equation of motion, i.e. 

iFF

mF

k
k W

ku

m

I
E 

22

22




 (2-42) 

Nevertheless, if the absolute energy in a FE-analysis and an equivalent SDOF-system 

is compared it is necessary to calculate the external and internal energy as shown in 

equation (2-41) and (2-42). 

 

2.4.2.5 Dynamic reaction 

In order to determine the maximum shear forces in the system it is of interest to 

determine the dynamic reaction force at the supports. The equivalent SDOF-system is 

modelled to have the same displacement as the system point in the real system, but the 

internal reaction force in the SDOF-system is not necessarily the same as the real 

reaction force. In order to obtain this reaction, it is necessary to set up a dynamic 

equilibrium where the inertia force I(t) is considered in the calculations. The inertia 

force has the same shape as the assumed deflection shape of the structure. The 

magnitude and the position of the resultant of the inertia force can be determined, as 

shown in Appendix B.2. Moment equilibrium can be established around the resultant 

and an expression for the dynamic reaction can be obtained. In Biggs (1964) this 

dynamic reaction is solved for beams and two-way slabs with different kinds of 

boundary conditions and load cases for both elastic and plastic analysis. The data is 

then presented in tables.  

For clarification, an example of a simply supported beam with evenly distributed load 

can be studied, see Figure 2.29a. To establish dynamic equilibrium, half of the beam 

is considered as shown in Figure 2.29b. It is known that in the middle of the beam the 

shear force S is equal to zero and the dynamic bending moment can be expressed in 

terms of the resistance R as:  

8

RL
m f   (2-43) 
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Figure 2.29. Determination of dynamic reactions. Based on Biggs (1964). 

As mentioned above, the distribution of the inertia force corresponds to the assumed 

deflection shape which is used to determine the position of the resultant. For a simply 

supported beam with an evenly distributed load, this shape can be expressed as:  

   433

2
2

5

16
xLxxL

L
x   (2-44) 

When the position of the resultant is known, see Appendix B.2, moment equilibrium 

is established around the resultant of the inertia force and the following expression is 

obtained:  

0
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






 LLmLV c  (2-45) 

Equation (2-45) is then solved for V with help of the expression for the dynamic 

bending moment and an expression for the dynamic reaction in terms of load and 

resistance is obtained, see Equation (2-46). 

FRV 11.039.0   (2-46) 

Both R and F in this case are functions of time but this equation must also be valid for 

a static case where the shear force V should be equal to 0.5F. If equation (2-46) is 

studied and the fact that R=F in case of static loading, it can be seen that this equation 

also holds for this case.  

The same procedure can be performed for various support conditions for plastic and 

elastic cases. These are tabulated in Biggs (1964). The dynamic reaction for a simply 

supported beam with ideal plastic behaviour can be written as 

FRV 12.038.0   (2-47) 

Fortifikationsverket (2011) has derived an expression, shown in Appendix B.1, for the 

reaction force at the support for a simply supported beam as 
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where κF and κm are the transformation factors for force and mass respectively. This 

method is very similar to that of Biggs (1964) 

504.0640.0  mF 
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(2-49) 

and for the plastic case 

333.0500.0  mF 
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(2-50) 

However, an advantage of Fortifikationsverket’s approach is that it lets the designer 

use a varying deformation shape by assuming the transformation factors over time and 

hence the position of the resultant may not have to be calculated for all displacement 

shapes that might occur. It is also clearer what actually affects the support reaction 

and will therefore also be used in this thesis. 

 

2.4.2.6 Equivalent static load 

A dynamic load can be translated into an equivalent static load in order to make it 

more convenient to calculate section forces. Moreover, designers are generally more 

familiar with static loads. The corresponding static load is obtained by deciding the 

load that generates the same external work as the impulse load. In line with definitions 

of internal work, Section 2.4.1.4, different expressions will be obtained depending on 

which material response is assumed. The equivalent static load corresponds to the 

response that is obtained when the maximal deformation is obtained and consequently 

does not follow the behaviour up to that point. The equivalent static load can be 

written as 

m

k
ωIQ kel          where            (2-51) 

pl

k
pl

mu

I
Q

2

2

  (2-52) 

for elastic and plastic response respectively, Johansson and Laine (2009). Ik is the 

characteristic impulse, m is the mass, k is the stiffness and upl is the plastic 

displacement. This corresponds to the ultimate resistance in the structure i.e.  

elel kuQ   (2-53) 

mpl RQ   (2-54) 
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When the equivalent static load is established it can be applied on the structure and 

the moment and shear force distributions can be found. The static equilibrium 

calculations mean that the reaction forces on the system are not governed by the same 

parameters as the normal static approach. This gives the reaction force in the support 

as 

22

elel
el

kuQ
V   (2-55) 

22

mpl

pl

RQ
V   (2-56) 

And bending moment in the centre as 

88
,

LkuLQ
M elel

elf   (2-57) 

88
,

LRLQ
M mpl

plf   (2-58) 

The dynamic bending moment is the same as derived in Biggs (1964). However, the 

support reaction is higher according to this method once the positive phase of the 

pressure wave has passed i.e. F = 0. Moreover, the equivalent static load does not take 

the early shear force resulting from the inertia forces into account as Biggs’ and 

Fortifikationsverket’s approaches do, Section 2.4.2.5. Johansson and Laine (2009) 

explain that high shear forces can initially occur close to the supports and that these 

must be further investigated. This statement refers to this phenomenon of initial high 

shear forces. 

Since the plastic equivalent load is governed by the plastic deformation, an upper 

limit to the displacement must be introduced and will consequently be the failure 

criterion. The possibility of large rotational deformations will decrease the needed 

equivalent static load and hence the reaction forces, Johansson and Laine (2009). The 

elastic approach is rather straight forward as the moment and shear capacities are 

compared with the maximum load effect. However, the maximum section forces in a 

linear elastic analysis do not depend on the parameters taken into account in a static 

analysis. The maximum field moment in a simply supported structure with elastic 

response can be calculated as 

m

kLiLILQ
M kel

elf

2

,
888





 (2-59) 

For a rectangular section the stiffness for an equivalent SDOF system can be written 

3

3

3 60

384

5

384

L

Ebh

L

EI
k FF    (2-60) 

And the mass for the equivalent SDOF model is 
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Lhbm m    (2-61) 

The maximum field moment can therefore be calculated to 

 mFmF

elf

Ehi

bhL

EbhLi
M

1060

384

8 4

32

,





  (2-62) 

This shows that the maximum field moment in a structure with elastic response is 

independent of the length. 

 

2.4.2.7 Iso-damage curves 

The worst case scenarios are defined by extreme cases and these are often used for 

design. The two extreme cases for an impulse load are described in Section 0, which 

are infinitely high pressure with infinitesimally short duration or a low pressure for an 

infinitely long duration. The response to a more general load, as seen in Figure 2.30, 

can be obtained by using iso-damage curves. These are curves that show the structural 

response to different combinations of pressure and impulse. The curve defines the 

combination of pressure and impulse that will cause a certain deformation, which can 

later be used to investigate if the structure will fail. As long as the actual pressure and 

impulse is lower than the limiting line, no failure is expected.  

 

Time, t 

Pressure, P 

P1 

i1 

t1 
 

Figure 2.30. A general pressure-time curve. 

An iso-damage curve can be found by solving the equation of motion for different 

load cases and thereby obtain a failure line for any combination of pressure and 

impulse. As a consequence, the shape of the curve is dependent on the material 

resistance and the load shape. Iso-damage curves are constructed by e.g. 

Nyström (2006) and Johansson and Laine (2009), the reader is referred to those for 

more information. The general appearance of iso-damage curves for different load 

shapes are shown in Figure 2.31. It is often convenient to express pressure and 

impulse with ratios between the actual peak pressure and impulse intensity and their 

characteristic values. 

k

I
i

i1  (2-63) 

k

F
P

P1  (2-64) 
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Figure 2.31. Iso-damage curves for 3 load shapes. Based on Krauthammer 

et. al. (2008) 

In many cases it is adequate to use the characteristic impulse. Johansson and 

Laine (2009) give an estimation of how large the error will be when using the 

characteristic impulse compared to the real load. This is in an elastic case a function 

of the structural period T and the load duration t1, see Table 2.4. The type of load 

curve is defined by n, which denotes the power of the load curve. Iis the ratio 

between the actual impulse and the characteristic impulse and F is the ratio between 

peak force and the characteristic peak force as shown in equation (2-63) and (2-64). It 

means that if the ratio between the structural period and the load duration is higher 

than the number in the table, the percentage of difference in displacement shown in 

the left column can be expected. For plastic response, no structural period can be 

determined and the difference in displacement is only a function of I and F and is 

shown in Table 2.5. 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:103 
38 

Table 2.4.  Displacement error for elastic response when using the characteristic 

impulse compared to the real load curve. From Johansson and 

Laine (2009). 

el [%] I [-] 

I

F

t

T






1  

n  = 0

 I

F

t

T





2

1

1



 

n  = 1

 I

F

t

T





3

1

1



 

n  = 2

 

1 1.01 12.89 10.60 8.84 

2 1.02 9.22 7.45 6.13 

3 1.03 7.51 6.10 5.00 

4 1.04 6.52 5.33 4.35 

5 1.05 5.86 4.75 3.90 

10 1.10 4.20 3.41 2.78 

15 1.15 3.48 2.82 2.29 

20 1.20 3.06 2.47 1.98 

25 1.25 2.78 2.23 1.77 

50 1.50 2.10 1.56 1.18 

75 1.75 1.80 1.23 0.91 

100 2.00 1.57 1.02 0.74 

     

Table 2.5.  Displacement error for plastic response when using the characteristic 

impulse compared to the real load curve. From Johansson and 

Laine (2009). 

pl [%] I [-] F [-]

 n  = 0

 F [-]

 n  = 1

 F [-]

 n  = 2

 

1 1.005 100 - - 

2 1.010 52 70 77 

3 1.015 35 46 52 

4 1.020 27 35 39 

5 1.025 21 29 32 

10 1.049 11 15 17 

15 1.072 7.7 10 12 

20 1.095 6.0 8.0 9.0 

25 1.118 5.0 6.7 7.5 

50 1.225 3.0 4.0 4.5 

75 1.323 2.3 3.1 3.5 

100 1.414 2.0 2.7 3.0 
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In general, it is likely that the structure has more than one failure mode with another 

governing equation of motion, Krauthammer et al. (2008). This can be incorporated in 

the diagram easily. The structure’s damage curve will then be a threshold curve of the 

lower values as seen in Figure 2.32. Failure will occur in both failure modes if the 

combination of pressure and impulse is in the upper right quadrant. In the example 

given, failure in only mode 1 will occur for low impulses with high pressure while 

low pressure with long duration will cause the structure to fail in mode 2.   
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Figure 2.32. Iso-damage curves for two potential failure modes. The lower values of 

these will create a threshold curve indicated with a dotted line. Based on 

Krauthammer et al. (2008). 

 

2.5 Direct shear 

2.5.1 Static response 

The direct shear phenomenon has been observed in static loadings with small shear 

span to effective depth, i.e. in deep members, Kriz and Raths (1965) as cited by 

Ross (1983). Direct shear can occur in areas with geometrical or load discontinuity, 

Crawford et al. (1999), tending to be brittle and to cause a sudden failure. It is a 

localised shear response of a structural concrete element characterised by cracking 

and slippage almost perpendicular to the longitudinal axis. Mattock and 

Hawkins (1972) gave a hypothesis of the phenomenon from experimental testing. 

Firstly, small inclined cracks develop along a shear plane, see Figure 2.33a. These 

cracks will define compression struts analogous to normal shear cracks but much 

smaller, both in length and width. The compression struts will carry the applied shear 

force by compression and transverse action since they are surrounded by uncracked 

concrete on both sides. Force equilibrium of such a strut can be established, as shown 

in Figure 2.33c, where V is the applied shear force, C is the compression component 

of the resistance, V’ is the transverse resistance of the strut, T is the tension 

reinforcement force and N is a potential tensile normal force. As the load increases the 

struts will rotate and compress, creating a “slip” along the shear plane. Flexural 

reinforcement will be strained and work in dowel action when slip takes place. A 

consequence of the rotation is that the ends of the cracks will propagate vertically. A 
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failure plane can therefore either form in the shear plane or a plane parallel to the 

shear plane. Eventually, the concrete compression struts will fail in combined 

compression and shear action, and the reinforcement steel will yield, causing the 

whole section to shear off with a more or less vertical failure surface.  

 

V V 

T+N 

V 
C 

(a)    (b)    (c) 

 

Figure 2.33. (a) Small diagonal cracks form along a shear plane. As they rotate, the 

cracks will propagate slightly vertically (b). Hence, the actual failure 

can occur in a parallel plane to the original shear plane. The resistance 

can be described with a strut and tie analogy (c), based on Mattock and 

Hawkins (1972). 

Consequently, vertical stirrups will not contribute to the shear resistance except by 

confining the concrete and providing support for the flexural reinforcement which acts 

in dowel action.  

Concrete shrinkage or accidental damage can cause a pre-existing crack through the 

depth of the member. The direct shear resistance will always be lower for a shear 

plane with an existing crack since the resistance is only governed by shear transfer 

along the cracks, aggregate interlocking and dowel action of the reinforcement, 

Mattock and Hawkins (1972). However, if the section is heavily reinforced, it will 

have a similar response to an initially uncracked section. In this thesis shrinkage of 

concrete will not be considered and the elements are assumed to be intact when 

loaded. 

 

2.5.2 Dynamic response 

Dynamic direct shear failures have been reported in experiments by Kieger 

et al. (1980-1984) and Slawson (1984), see Figure 2.34. These are observed close to 

the supports short after the arrival of the shock wave for highly impulsive loads. 

According to Low and Hao (2002) a high stiffness with a short span increases the risk 

for direct shear failure. It has also been shown that a load with high amplitude for a 

short duration increases the risk for direct shear failure. If the structure survives the 

direct shear mode, it will go into flexible mode. The early behaviour of a beam 

subjected to an impulse load must therefore be studied in order to explain what causes 

these types of failures.  
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Figure 2.34.  Slab that has developed direct shear behaviour, Slawson (1984) 

It has been shown in previous research (Slawson 1984; Kieger and Getchell 1980-

1984; Johansson and Laine; 2009, Nyström, 2006; Augustsson and Härenstam; 2010) 

that the initial deformation shape for a structure subjected to blast loading is not the 

same as that predicted at maximum deformation. Within the first few milliseconds 

after load arrival the deformation shape is characterised by a nearly rigid body motion 

of the centre part of the element as shown in Figure 2.35. The un-deformed parts of 

the element close to the supports have not deformed as much, which creates a large 

difference in deformation over a small length. No flexible behaviour is observed in 

the early time span, which suggests that the direct shear failure mode and the flexible 

failure mode can be considered independent of one another.  

 

 

Figure 2.35. Research has indicated that a structural element subjected to an impulse 

load will initially deform as a rigid body motion. 

The theory behind dynamic direct shear failure mode is not well understood. One 

possible reason of the early behaviour is explained by Ross (1983). He uses simple 

elastic wave propagation theory to explain reflections of the shock wave approaching 

the element, see Figure 2.36. After the wave has progressed through the depth of the 

member, it encounters a boundary between the edge and the air or supports. The wave 

is transmitted into the supports while it completely reflects at the edge of the beam in 

between the supports since the impedance of air is close to zero. As a result, the 

relative difference between the velocities will be twice the previous velocity, which 

will cause a velocity discontinuity close to the support, and therefore a high shear 

force.  
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Figure 2.36. Ross (1983) explains the dynamic direct shear phenomenon with elastic 

wave theory in which the wave is transmitted at the supports and totally 

reflected in the centre. This generates a relative difference of double 

velocity in the centre part compared to the velocity at the supports. 

Another way of explaining the early behaviour is made by Johansson and 

Laine (2009) and previous Master’s theses; Nyström, (2006), Augustsson and 

Härenstam, (2010). They realise that the information of a load travels with an 

approximate velocity of 3500 m/s in concrete. As a result, the centre part will not be 

aware of the support conditions before information about this has reached them. The 

boundary conditions can therefore be seen as time dependent, where they are initially 

not active and later moves with the information speed in the structure. The governing 

speed should probably be the velocity of a shear wave. 

Since the centre part moves much more and faster than the supports, a discontinuity 

region will occur close to the supports with very high shear inertia forces. These can 

be calculated with for example, Biggs (1964) or the equivalent static load concept 

described in Section 2.4.2.6. However, it is important to remember that these methods 

are only valid when the assumed deformation shape takes place.  

Ardila-Geraldo (2010) stated that a structure will fail in shear if the shear demand is 

larger than the capacity. He investigated the actual shear demand at the supports by 

comparing with experiments and found that the support reaction can be found by 

varying the deformation shape and stiffness in an SDOF model. He derived an 

expression for the initial stiffness by taking the rigid body motion into account. This 

expression was later calibrated by FE analysis and experimental testing. He proposed 

that the stiffness should be taken as 
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where T is the structural period and ks is the theoretical bending stiffness assuming the 

elastic flexural displacement shape. The relationship is illustrated in Figure 2.37. 

 

 

 

 

Stiffness, k 

Time, t 

0.1T 

ks - 

10ks  

 

Figure 2.37. Stiffness variation derived by Ardila-Geraldo (2010), assuming a near 

rigid body motion. 

The support reaction is then calculated with a modified Biggs equation 

RtFtV   )()(  (2-66) 

where  and have been calibrated from FE-analyses and 

Tt 1.0when  12.002.0    (2-67) 

  5.0
 

(2-68) 

It is important to find the correct initial reaction force at the supports in order to 

investigate the direct shear behaviour. Therefore a study on the shear force at early 

stages will be carried out in Chapter 6. 

 

2.5.3 Simplified model for dynamic direct shear 

An SDOF model can be used to explain the behaviour of direct shear analogously to 

the flexible case. The system point should be taken in a point very close to the 

supports. The shear force at the support should be evaluated and used in this model. 

This is done by using the flexible equation of motion, equation (2-29), and calculating 

the dynamic reaction force with Biggs’, Fortifikationsverket’s or the equivalent static 

load method, described in Sections 2.4.2.5 and 2.4.2.6. Since the direct shear happens 

very early, before any significant flexible behaviour, the flexible SDOF equation of 

motion and the direct shear equation of motion, equation (2-29)  and (2-69) can be 

considered uncoupled. 

The initial response when a structure is subjected to an explosion is a rigid body 

motion, which means that the transformation factors used to transform the structure to 

the single degree of freedom system is close to mF = 1. The shear slip, , at the 
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supports can then be calculated with the simplified equation of motion for the direct 

shear case, see Figure 2.38. As for the flexible case, damping is neglected.  

)(tVRM ss    (2-69) 

 

 

V(t) 

     ttt  ,,   

Rs 

Ms 

 

Figure 2.38. Equivalent SDOF-model for direct shear, based on Crawford et al., 

1999). The stiffness Rs can be taken from the direct shear resistance 

function in Figure 2.39. Damping effects are neglected. 

 

The resistance Rs is taken from the direct shear resistance function developed by 

Hawkins (1974). He used static tests to find a relationship between the shear slip and 

the shear stress. The relationship was later modified by Krauthammer (1986) in order 

to take rate effects and normal forces into account by applying a factor 1.4 to the 

relationship found by Hawkins. The relationship is shown in Figure 2.39 and is 

explained below. In this thesis, rate effects have been ignored to give results on the 

safe side. 
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Figure 2.39.  Shear resistance versus the slip along a shear plane. The enhanced 

curve takes strain rate and normal forces into account.  Based on 

Mattock and Hawkins (1972) and later modified by Krauthammer 

(1986). 

The resistance function is an empirical model based on static tests. The first segment 

from 0-A has an elastic response until a slip of 0.1 mm has been reached. For shear 

slip in this range, the influence of reinforcement dowel action can be neglected. Thus, 

the elastic part is independent of the amount of reinforcement crossing the shear 

plane. For very low slips, the slip can be approximated with the crack width. This 

leads to the formulation of the shear resistance in segment 0-A, see Table 2.6. The 

first equation can be used for both pre-cracked and uncracked sections. For larger 

shear slips, >1, dowel action becomes significant and should be considered. 

Between A and B the shear resistance will increase until a shear slip of 0.3 mm is 

reached.  The resistance will remain constant until a slip of 0.6 mm is reached. For 

large specimens, the plateau can be somewhat longer. The stiffness is negative 

between C and D, independent of the amount of reinforcement and only slightly 

dependent on the concrete strength. The resistance will later remain constant until a 

failure shear slip ∆max is reached. This segment is merely dependent on reinforcement 

dowel action. The resistance function equations are shown in Table 2.6.  
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Table 2.6.  Definition of Direct Shear Resistance Function converted into SI-units 

see Figure 2.39. Based on Crawford et al. (1999). 

Region Definition 

0-A The response is elastic, and the slope, ke of the curve defined by the shear 

resistance, e, for a slip of 1 = 0.1 mm. That resistance is given by the 

expression 

ce f157.0138.1   

Where both e  and fc are in MPa. The initial part should be taken as elastic 

to not more than
2

m
e


  . 

A-B The slope of the curve decreases continuously with increasing 

displacements until a maximum shear strength, m, is reached at a slip of 

2 = 0.3 mm. The maximum strength is given by the expression 

cyvtcm fff 35.08.0664.0    

where m, fc and fy are in MPa and vt is the ratio between the total area of 

reinforcement crossing the shear plane divided by the area of the plane. fy 

is the yield strength of the reinforcement crossing the plane. The direction 

of the reinforcement is not discussed but should have an impact on the 

resistance. 

B-C The shear capacity remains constant with increasing slips. C corresponds 

to a slip of 3 = 0.6 mm. 

C-D The slope of the curve is negative, constant and independent of the amount 

of reinforcement crossing the shear plane. The slope is given as 

 3N/mm     0295.0543.0 cu fk   

D-E The shear capacity remains constant. The deformation at E varies with the 

level of damage, with a failure at a slip of  

 1423.0max  xe  

Where 

bc df
x

/

18.5
  

And db is the bar diameter in mm. The limiting shear stress is defined as

su

c

sb

L f
A

A










 85.0  

where is Asb the area of the bottom reinforcement, Ac is the area of the 

concrete section and fsu is the ultimate strength of the bottom 

reinforcement. 
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Chee (2008), evaluated previous carried out experiments by Kieger and Getchell 

(1982), with the two SDOF models. These experiments were performed on slabs and 

the resistance function was obtained by combining the direct shear resistance in each 

direction. Chee (2008), found good agreement and could use the SDOF models to 

predict which failure mode that would occur. The resistance function was taken as:  

yx RRR   (2-70) 

Where Rx and Ry are the resistance function for the slab in each direction. Reliability 

analyses have also been performed with this resistance function by Low and How 

(2002) with good accuracy. 

 

2.5.4 Design approaches 

2.5.4.1 Swedish design approach 

The concepts of direct shear, described by Swedish fortification Agency, 

Fortfikationsverket, (2010), are presented in this section. First it is shown how the 

shear force effect is calculated and then how the resistance is calculated. The shear 

force should be checked for the initial elastic response and in the elasto-plastic 

oscillating phase.  

A shear span is calculated by taking the early rigid body motion into account and is 

used to give a lower limit for when normal shear resistance can be used. If the shear 

span to effective depth is less than 1.5 a strut and tie model should be used according 

to Boverket (2004). This could be seen as the direct shear resistance. The limit is 

defined as 

5.1
d

a  (2-71) 

The procedure will not be explained in detail, but worth mentioning that the strut and 

tie method does not take into account that the crack is almost vertical. For more 

information the reader is referred to Chapter 6 in Boverket (2004). 

The normal approach for shear design is described below. The maximum total 

reaction can be calculated as: 

baqbapV eq

m

F

m

F
tot 
















 22

1  (2-72) 

where a and b are the length and width of a slab and for a beam a is the length and b 

is the loaded width of the beam. κF and κm are the transformation factors for the 

element, see section 2.4.2.6 for values, qeq is the equivalent static load and p is the 

peak pressure. Plastic response is assumed if 

2
eqq

p
 (2-73) 

and the plastic transformation factors should then be used. From this, the support 

reaction can be calculated as 
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totvSd VkV   (2-74) 

where kv depends on the deformation shape of the structure. For a simply supported 

beam kv will be 0.5. 

The shear capacity shall be examined in the shear span, i.e. half the distance between 

the support and zero shear force. It can be shown that the shear effect at this point is 

half the support reaction, see Appendix C for derivation.  

TOTvd VkV 5.0  (2-75) 

The shear span aτ can be calculated as 

supportssimplyfor25.0025.0
p

q

L

a eq
  (2-76) 

supportsfixedfor35.001.0
p

q

L

a eq
  (2-77) 

where L is the length of the span, qeq is the equivalent static load and p is the peak 

pressure. For slabs, L should be replaced by the shorter width b since it gives a 

smaller shear span and a higher shear effect. From this expression it can be identified 

that the shear span is increasing for lower pressures. Moreover, it is clear that using 

equation (2-71) the limit for using normal shear force resistance for a simply 

supported beam is defined as 

5.125.0025.0 















d

L

p

q

d

a d  (2-78) 

The capacity of a concrete section without influence of shear reinforcement is a limit 

for a form of crushing of compression strut and is defined as 

bdkV cc   (2-79) 

where d is the effective depth and kc is depending on the shear span, the protection 

level and reinforcement amount.  

s

f
kkc



  (2-80) 

Here s is a factor for the protection level used by the Swedish military and depends on 

how much damage the exposed structure can be allowed: 

B3andB2B1, levelprotectionfor 2.1s  

C levelprotectionfor0.1s  

and fρ is a factor that depends on the amount of reinforcement (ρ) 
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3

1.0
7.0





f  (2-81) 

db

As


       where  (2-82) 

and kτ depends on the shear span and the concrete strength.  

45.0if25.00, 
d

a
fkk c


  (2-83) 

45.0if45.0
0,


d

a

d

a

k
k 





  
(2-84) 

If the shear force capacity is not sufficient, i.e. Vd>Vc according to equations (2-75) 

and (2-79), shear reinforcement must be introduced. The required shear reinforcement 

can be calculated as 
















d

c
tots

V

V
VV 1  For the initial elastic response (2-85) 
















L

a

V

V
VV

d

c

tots

8

2
1

min,

min,

 

For the oscillating elasto-plastic response (2-86) 

where minimum values Vd,min and Vtot,min are obtained by setting p/q=1 and L as the 

shorter span b for slabs. The shear reinforcement can then be calculated as  

 (2-87) 

where θ is the angle of shear reinforcement to the flexural reinforcement in tension. 

Consequently, no consideration is taken that the shear crack can be vertical. 

In case of elastic response the shear reinforcement should be evenly distributed over 

the length 
















d

c

V

V
ax 11  (2-88) 

In case of elasto-plastic response the shear reinforcement should be evenly distributed 

over the length 













 


L

a

V

V
Lx

d

c 8
1125.0

min,

 (2-89) 

  yk

s
t

f

A
V




sin
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where the distance between the shear reinforcement should not be greater than 

0.75∙(1+cotθ)∙d. L should be set as the shorter span b for slabs. 

 

2.5.4.2 American design approach 

DoD (2008) defines direct shear as the rapid growth of a vertical crack through the 

depth of a concrete member. Diagonal steel reinforcement anchored in the support can 

prevent this and is required if the  

 design support rotations are greater than 2° 

 concrete direct shear capacity is insufficient 

 section is in tension.   

The direct shear capacity of concrete is considered to be zero if the rotation is greater 

than 2° or if the section is in tension, which can be the case with an indoor explosion. 

Diagonal reinforcement is not recommended to be designed in beams. Instead, 

rotations should be limited and the concrete direct shear capacity sufficient. The direct 

shear capacity is not zero for simply supported members even if the support rotation is 

greater than 2°. Consequently there is no need for diagonal reinforcement if the direct 

shear capacity is adequate. The direct shear capacity for concrete can be written as for 

a slab and beam respectively.  

slabsfor'16.0 bdfV dcd   (2-90) 

beamsfor  '18.0 bdfV dcd   (2-91) 

where Vd is the direct shear capacity of an element with width b and effective depth d. 

f’dc is the ultimate dynamic compression strength of the concrete, which is 10% 

greater than the ultimate compression strength.  

cdc ff  1.1'  (2-92) 

If diagonal bars are required, the required area can be expressed as 

 
 sin' 




ds

ds
s

f

VbV
A  (2-93) 

Where As is the required shear reinforcement bar area, Vs is the ultimate shear force at 

the face of the support per unit width,  is the angle of the bars and f’ds is the dynamic 

design stress for the reinforcement, which depends on the maximum support rotation. 

How to determine the dynamic design stress for different support rotations is 

presented in DoD (2008), with a lower value corresponding to the yield stress fyd for 

small values of the maximum support rotations. 

For an unreinforced concrete member loaded in bending the maximum allowable 

shear stress, Vc, can be calculated with equation (2-94) or (2-95).  

  2/1
2 dcc fV   (2-94) 
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     2/12/1
5.3          25009.1 dcdcc ffV  

 

(2-95) 

Where is the reinforcement ratio of tensile reinforcement at the support. 

According to DoD (2008), the ultimate shear force at the face of a support is 

reasonably estimated for a short duration blast load as a function of the maximum 

internal resistance only. If the ultimate resistance is not reached, the actual elastic 

resistance value should be used to obtain the shear forces at the supports. This 

corresponds to using the equivalent static load introduced in Section 2.4.2.6. The 

values for different support and load conditions are shown in Table 2.7. 

An interesting observation is that this corresponds to using the equation as in the 

Swedish approach, see equation (2-72), with transformation factors assuming a rigid 

body motion, i.e. m = F = 1. Consequently, the contribution from the load is not 

taken into account as it is for the Swedish approach. This should be on the unsafe side 

initially but conservative during the plastic oscillation. 

Table 2.7.  The maximum support reaction according to DoD (2008). Ru and ru are 

the ultimate internal resistance force and force per unit length. 

Edge Conditions and Loading 

diagrams 

Support Reactions, Vs 

Left support Right support 
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The shear force at the supports of a slab is harder to determine but expressions can be 

found in DoD (2008). It is derived by using the yield line procedure and depends on 

which yield line figure that is chosen. The reader is referred to DoD (2008) for more 

information. 
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3 Reinforced concrete beam subjected to impulse 

load 

 

3.1 Introduction 

In order to give a better understanding of the behaviour of a reinforced concrete beam 

subjected to an explosion, an example is carried out. The beam is modelled in the 

finite element program ADINA which is considered to best represent the real 

behaviour. The result will be compared to the result that can be obtained by simplified 

hand calculations and with an equivalent SDOF approach described in Section 2.4.2. 

The problem will be simplified by only considering four material responses, namely; 

linear elastic state I, linear elastic state II, ideal plastic and elasto-plastic. The beam is 

modelled in ADINA with beam elements with the different simplified material 

behaviours. The example will later be extended by modelling the real non-linear 

behaviour in Appendix I. 

 

3.2 Definition of geometry and loading 

A 3 metre high and 400 mm deep reinforced concrete wall in a protective facility or a 

building without windows will be analysed. The wall is reinforced with steel 

reinforcement B500B s which is placed 40mm from the edge. Since a 

dynamically loaded system will be strained in both directions it is important to 

reinforce both sides of the member equally. The concrete strength is C30/37. The wall 

is subjected to a uniform pressure that decreases with time. For this case the so called 

archive bomb, introduce in Section 2.1, has been used as a reference load; i.e. 125 kg 

of TNT detonated 5 metres away from the wall and assuming spherical spreading, 

Johansson and Laine (2007). This will give a peak pressure of 5000 kPa and an 

impulse intensity of 2800 Ns/m
2
, which corresponds to load duration of 1.12 ms when 

assuming a triangular load impulse as mentioned in Section 2.1. The archive bomb is 

referred to as load case 1, also denoted LC1. The wall will be subjected to other load 

cases with the same impulse intensity. All load cases and their corresponding values 

are presented in Figure 3.1. Further, when no specific load case is mentioned load 

case 1 is used. 
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Load case Ppeak [kPa] t [ms] 

LC0 10,000 0.56 

LC1 5,000 1.12 

LC2 2,500 2.24 

LC3 1,250 4.48 

tt
 

Ppeak 

Ppeak, 0 

Ppeak, 1 

Ppeak, 2 

Ppeak, 3 

t, 0 t, 1 t, 2 t, 3  

Figure 3.1. An illustration of the different load cases and their corresponding values 

of peak pressure Ppeak and load duration t. All loads have the same 

impulse intensity i. 

The wall is not hindered to rotate at the rigid supports, which only support the wall in 

one direction. Thus, the wall can be simplified as a simply supported beam element 

with a width of 1 metre, see Figure 3.2. The data is summarised in Table 3.1. 

  

 

1.0m 

0.4m 

A-A 

3.0m 

A 

A 

q 

 

Figure 3.2. The dimensions of the beam used in the example. 

Table 3.1. Summarised data for the example beam. 

Data for the example 

Length, L 3.0 m Impulse intensity, i 2800 Ns/m
2 

Depth, h 0.4 m Peak pressure, Pc 5000 kPa 

Width, b 1.0 m Active time, t
 1.12 ms 

Reinforcement 20s200 B500B   

Concrete C30/37   

Concrete cover, c 50 mm   
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The beam can be simplified into a single-degree of freedom system by choosing a 

system point and then applying an equivalent mass, stiffness and force to it. The 

centre point of the beam has been chosen as the system point in this example. The 

transformation of a beam into a SDOF-system is done by using transformation factors. 

The transformation factors depend on the shape of the beam deflection, which means 

that different transformation factors will be used for the different material behaviour. 

They are tabulated in Section 2.4.2.3. The equation of motion can then be solved 

analytically or numerically. The central difference method will be implemented in 

MATLAB for this example, and is presented further in Appendix A. 

 

3.3 Equivalent SDOF system 

3.3.1 Mass 

The hand calculation uses the work equilibrium method described in Section 2.4.2.4. 

In order to calculate the maximum deflection and the work equilibrium, the stiffness, 

equivalent mass and the maximum resistance force must be calculated. The mass can 

be calculated to  

kg28800.30.14.02400  Lwhm   (3-1) 

As shown in Section 2.4.2.3, the only parameter needed to be transformed into an 

equivalent parameter is the mass. It will depend on the deflection shape and hence we 

obtain different equivalent masses for the elastic and plastic cases, respectively. The 

κmF values are presented in Section 2.4.2.3. The equivalent mass for the elastic and the 

plastic materials respectively is 

kg 22702880788.0  mm mFel   (3-2) 

kg 19212880667.0  mm mFpl   (3-3) 

 

3.3.2 Stiffness 

The stiffness for a simply supported beam can be calculated as 

35

384

L

EI
k   (3-4) 

Hence, the moment of inertia for state I and II is to be found. The influence of the 

reinforcement in the compression zone in state I and II can be neglected. The tension 

reinforcement is considered by transforming the steel area into a corresponding 

equivalent concrete area. 

ss

c

s
eqs AA

E

E
A ,  (3-5) 

where 
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220
mm 1571

2.0

314


s

A
As



 
(3-6) 

36.6
33

200


c

s

E

E
  (3-7) 

 

(3-8) 

 

The effective depth is 

mm 35050400  chd  (3-9) 

Then the moment of inertia for state I can be calculated as 

 
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






 d

hh
dA
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I sI 

 (3-10) 

In state II, the moment of inertia must be calculated from the cracked cross-section. 

By assuming negligible normal forces, the height of the compressed zone x can be 

calculated by area equilibrium 

s

s

Abx

dA
x

b

x








 2

2

 
(3-11) 

The height of the compressed zone is then obtained 

mm 74x  (3-12) 

The moment of inertia in state II can then be calculated as 

    482
3

2
3

mm 1097.874350157136.6
3

741000

3



 xdA

bx
I sII 

 

(3-13) 

The stiffness for the cracked and uncracked state can be calculated using 

equation (3-4). 

m

N
1000.5

35

1033.51033384 8

3

39









Ik  

m

N
 1042.8

35

1097.81033384 7

3

49









IIk  

(3-14) 

 

(3-15) 

 

3.3.3 Maximum internal resistance 

When the plastic case is considered, there is no stiffness and instead the internal 

resistance is explained by the maximum capacity. As a simplification, the plastic 

material behaviour is modelled as a straight line, which starts to yield at the maximum 

capacity. A comparison is made and the difference is only 2% between the ultimate 

moment capacity and moment capacity when the steel just yields, see equation (3-20).  
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The ultimate moment capacity must therefore be calculated. An explanation is given 

in Figure 2.5. The compressed zone, x, can be calculated from equation (3-16), if is 

assumed that the steel yields and that the section reaches its ultimate capacity when 

the concrete reaches the ultimate compressive strain in the outermost fibre. Factors R 

and βR are stress block factors that are 0.81 and 0.416 respectively when the section 

has reached its ultimate capacity according to Eurocode 2, CEN (2004).   

 mm 42

1000
5.1

30
81.0

1571
15.1

500








wf

Af
x

cdR

syd


 (3-16) 

The partial coefficients used for steel and concrete are equal to 1.15 and 1.5 

respectively. An explosion is categorised as an accidental load and therefore these 

partial coefficients should be set to 1.0 for steel and 1.2 for concrete. Nevertheless, the 

values used in this thesis will not affect the comparison. However, it should be 

noticed that in design the correct partial coefficients corresponding to an accidental 

load should be used. The moment capacity can then be established by moment 

equilibrium around the steel reinforcement.  

  xdbxfM cdRRd   

  kNm 227042.0416.035.01042.0
5.1

30
81.0   

(3-17) 

According to Biggs (1964) the maximum internal resistance is defined as 

kN 606
3

1022788 3





L

M
R Rd

m  (3-18) 

The moment capacity when the reinforcement steel start to yield is calculated by 

assuming the strain in the tension reinforcement is equal to the yield strain. The 

moment at this point can be calculated as 

kNm 223 
32

2












 II

II

IIsyC

yd

x
db

xd

xE
M


 (3-19) 

The ratio between the two moment capacities are stated as 

.980 
Rd

yd

M

M
 (3-20) 

The state II stiffness has been used in the elasto-plastic model. This will give a 

slightly larger elastic deformation than in the real case. This is because a bi-linear 

relationship is assumed which will give a longer elastic branch, see Figure 3.3.   
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u 

Rm  - 

R 

Assumed behaviour 

Real behaviour 

uel,Real uel,Assumed 

 

Figure 3.3. The difference between the real behaviour and the assumed bi-linear 

elasto-plastic behaviour used in the SDOF model. 

 

3.4 Hand calculations 

3.4.1 Maximum required deformation 

The required deformation for having energy equilibrium assuming linear elastic 

behaviour can be calculated as 

m

I
u c

el   (3-21) 

The deformations in state I and state II can be obtained as 

mm 9.7
1000.52270

312800

8
, 




Ielu  (3-22) 

mm 2.19
1042.82270

312800
7, 




IIelu  (3-23) 

According to equation (2-17) the plastic deformation can be expressed as 

mR

I
u c

pl
2

2

  (3-24) 

This will give the required plastic deformation 

 
mm 3.30

105.60519212

132800
3

2





plu  (3-25) 
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The total deformation for the elasto-plastic case can be calculated according to 

equation (2-18) as 

k

R

mR

I
u c

ep
22

2

  (3-26) 

The total elasto-plastic deformation will therefore be 

mm 9.33
1042.82

10605
103.30

7

3
3 




 

epu  (3-27) 

Of which the elastic deformation is 

mm 1.7
1042.8

10605
7

3

, 





k

R
u elep  (3-28) 

Then the plastic part of the deformation can be calculated as 

mm 8.26,,  elepepplep uuu  (3-29) 

In the ideal plastic and the elasto-plastic cases, the maximum capacity is assumed and 

the energy is dissipated with plastic deformation. The failure criterion will therefore 

not be the moment capacity. It is rather the rotational capacity of the section that is 

important. 

 

3.4.2 Dynamic reactions 

The dynamic reactions can be calculated for the instant when maximum deformation 

takes place by using an equivalent static load, described in Section 2.4.2.6. For the 

elastic case it is 

cel IQ   (3-30) 

This gives a value for the uncracked case 

kN 3942
2270

1000.5
132800

8

, 


IelQ  (3-31) 

And for the cracked case 

kN 1618
2270

1042.8
132800

7

, 


IIelQ  (3-32) 

The plastic equivalent load is calculated from 

kN 606 mpl RQ  (3-33) 
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Rm is calculated according to equation (3-18). The moment effect on the beam at mid 

span can then be calculated as 

8

QL
M Ed   (3-34) 

According to Johansson and Laine (2009) the support reaction can be found as 

2

Q
VEd 

 
(3-35) 

This gives the dynamic reaction presented in Table 3.2. Johansson and Laine (2009) 

also mention that higher support reactions can occur at an early stage when the beam 

is subjected to an impulse load. 

Table 3.2. Dynamic reactions at maximum deflection 

  u [mm] MEd [kNm] VEd [kN] 

Elastic state I  7.9 1478 1971 

Elastic state II  19.2 607 809 

Plastic  30.3 227 303 

 

An interesting observation is that less stiff elements will deform more but will not 

require as much capacity. However, there is an upper limit for how much an element 

can deform. For the elastic cases a simple capacity check can be carried out. For the 

plastic case the plastic rotation capacity must be limited.  

The Eurocode 2 approach to perform this check is described in section 2.2.3. Firstly, 

the shear slenderness should be checked. This is done by dividing the shear span with 

the effective depth of the member. The shear span for a simply supported beam is half 

the length. 

29.4
35.02

3

2

0 



d

L

d

x
s  (3-36) 

The diagram in Figure 3.4 is used for finding the plastic rotation capacity. It is only 

valid for λs=3. For other values it should be corrected with 

20.1
3
 sk


  (3-37) 
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x / d 

pl  [10 -3 rad] 

 

Figure 3.4. Diagram for evaluating the plastic rotation capacity according to 

Eurocode 2, CEN (2004). 

In this example, the ratio between the compressed zone and the effective depth of the 

beam is 

12.0
350

42


d

xu  (3-38) 

Class B reinforcement is used, then the plastic rotation capacity can be found as 

θpl = 12.5∙10
-3

 
rad from Figure 3.4. It can be observed that the capacity is limited by 

the ultimate steel strain. However, it is a good design since the plastic rotation 

capacity is high. 

The maximum plastic rotation capacity can then be calculated as 

rad 1015105.1220.1 33

,

  pldpl k    (3-39) 

The plastic rotation capacity can be related to the plastic displacement for a simply 

supported beam as 

mm 5.22
2

10153

2

3
,

, 





dpl

dpl

L
u


 (3-40) 

which is smaller than the deformation in the elasto-plastic model. However, in 

equation (3-32) it is shown that the plastic deformation needed is 26.8 mm, i.e. larger 

than the capacity, which means that the beam will not be able to resist the blast load 

and will fail when the deformation reaches 22.5 mm. 
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3.5 FE-analysis ADINA – considerations and restrictions 

3.5.1 Introduction 

For detailed analyses the finite element program ADINA will be used. It is a good 

choice when analysing a structure’s dynamic response. However, some important 

considerations and modelling simplifications must be introduced such as: usage of 

equivalent Young's modulus, FE elements, wave propagation, integration schemes, 

output and damping.  

 

3.5.2 Equivalent Young’s Modulus 

The choice of modelling a simplified material in ADINA is by using a linear or bi-

linear material response. Hence, this will cause some modelling issues concerning the 

correct Young’s Modulus and thereby the correct speed of the waves in the material. 

When the calculation in state II is performed, ADINA will not recognise that the 

section is cracked and will use the moment of inertia of the full uncracked concrete 

section. In order to model a cracked section and obtain the state II stiffness, the 

Young’s modulus will be multiplied with the ratio between the moment of inertia in 

state II and state I from equation (3-10) and (3-13).  

GPa 18.533
1071.5

1097.8
3

4











I

I

II
II E

I

I
E

 

(3-41) 

ADINA cannot model ideal plastic material behaviour. Instead, a bi-linear relation 

with a Young’s modulus multiplied with 100 to approximate a fully plastic behaviour 

is used. 

GPa3300100  Ipl EE  (3-42) 

It could be argued that the wave speed in the material should be maintained by 

changing the moment of inertia instead of Young’s modulus. This will affect the 

fictional yield stress and the geometry of the beam and will consequently be a more 

complex way of modelling. The modelling can be performed in three ways, shown in 

Figure 3.5. The first scheme is used above in order to calculate an effective Young’s 

modulus. This method does not maintain the wave speed in the beam, see 

equation (2-19), which will change with the square root of the factor used for the 

Young’s modulus. Scheme 2 maintains the wave speed by only changing the moment 

of inertia I. As a result, the geometry and the fictional yield stress must be changed. If 

the height of the beam is increased to more than three times the span length it 

becomes a deep beam and ADINA cannot guarantee accurate solutions when using 

beam elements with the Euler-Bernoulli beam theory formulation. Therefore, a third 

scheme is introduced, which maintains the wave speed by increasing the density. 

Since the mass must be constant this unfortunately also affects the geometry and 

fictional yield stress. This is the most complicated scheme and is not preferable since 

it does not provide a solution to the deep beam problem. 
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Figure 3.5. The methods for changing stiffness when a cracked section or an ideal 

plastic section is considered.  

If the bending stiffness EI decreases and schemes 2 or 3 are used, the equivalent 

section will become wider and lower. Consequently, the deep beam formulation will 

never occur and these schemes are applicable at all times provided that the original 

section is not a deep beam. The ideal plastic case is modelled with larger bending 

stiffness EI. This will mean that the depth of the beam increases and problems in the 

modelling can occur. 

Scheme 1 is preferable to use since it only changes the Young’s modulus. Therefore, 

the influence of the wave speed must be investigated. This is carried out by keeping 

EI constant, i.e. changing Young’s modulus and the moment of inertia with the same 

factor, i.e. 



I
I '          and       EIEI )'(   (3-43) 

It is carried out in an elasto-plastic case but gives the same results in the elastic and 

ideal plastic cases. As can be seen in Figure 3.6, the deformation changes when the 

wave speed is decreased. The solution with 9 times less elasticity modulus diverges 

slightly after having reached the turn point. This corresponds to 3 times lower wave 

speed. Considerable change is not noticed until the velocity is wrong with a factor of 

five, i.e. E / 25. If the moment of inertia is increased 100 times, the beam becomes a 

deep beam and the deformation diverges a lot; i.e. such a combination cannot be used. 

The solution using an equivalent elasticity modulus, though, agrees well with the real 

behaviour. It can therefore be justified to use scheme 1 when modelling the state II 

behaviour.  
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Figure 3.6. The displacement in midpoint for different wave speeds in the beam. 

The deformation in the midpoint is very similar if the wave speed is the “real” wave 

speed or higher. Therefore, the model with ideal plastic behaviour is believed to be 

reasonably correct. It is not possible to investigate how the wave speed influences an 

ideal plastic 3 metres beam since the moment of inertia cannot be increased 

considerably before deep beam is obtained. Therefore, Studies of a 15 metres long 

beam have also been carried out. The -value was 100. The deformation is higher for 

the model with higher wave speed while scheme 2 and 3 provide the same result.  

The wave speed in the beam is complicated and is researched by ADINA at the 

moment. As will be seen in Section 3.5.4, the time-step also influences the wave 

propagation and the existing problems with wave propagation should be known. 

However, the currently used modelling techniques are sufficiently accurate for this 

case and small changes in the wave speed can be neglected. 

 

3.5.3 FE-elements 

Beam elements will mainly be used for this thesis. A detailed analysis will be 

performed using 2D-solid plane stress elements will also be performed. 

All elements in the beam will be modelled as elastic, plastic or elasto-plastic. Ek and 

Mattsson (2009) modelled the beam with one plastic element in the midpoint. They 

obtained a large divergence in their result since the elastic elements oscillated around 

the plastic element. 
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ADINA chooses 7 integration points over the height of the cross-section, regardless of 

the user’s choice, when performing 3D beam analyses. It has been shown in previous 

master theses (Ek and Mattsson, 2009; Augustsson and Härenstam, 2010) that 

ADINA will not have the assumed capacity of a 3D beam cross-section. The stress are 

correct at the integration points but the stress distribution in between is described with 

a polynomial which gives another capacity compared to what would be expected. This 

is illustrated in Figure 3.7. 

 

 

Expected stress distributon 

fyd 

fyd 

Stress distribution using  

7 integration points 

fyd 

fyd 

 

Figure 3.7. The stress distribution over the height using 7 integration points.  

However, when 2D beam elements are used it is possible to use 3 integration points 

over the height in ADINA, which will make the stress vary linearly through the cross 

section, see Figure 3.8. In this example only 2D action is used, which means that 2D-

beam elements with 3 integration points over the height are used. A fictional yield 

stress can therefore be introduced. The input fictional yield stress is dependent on the 

stress distribution and indirectly dependent of the integration points. The input 

fictional yield stress can therefore be calculated to 

Figure 3.8. Stress distribution when using 3 integration points over the height. A 

fictional yield stress, fyd can be introduced. 

 

3.5.4 Wave propagation 

3.5.4.1 Introduction 

Wave speed is of importance when investigating the initial behaviour of an impulse 

loaded structural element. Therefore, the modelling of wave propagation in ADINA 

needs to be investigated. This is done for both beam elements and solid 2D-elements. 

It should be mentioned that ADINA always uses the elastic wave regardless of the 

structures response, ADINA (2010). The investigation has been made with an impulse 

with constant amplitude for 1 ms, see Figure 3.9. 
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Figure 3.9.  Impulse load used for wave propagation studies. 

 

3.5.4.2 Beam elements 

The two cases shown in Figure 3.10 were investigated. The support reaction was 

investigated and the wave was assumed to arrive when the magnitude reached 0.5% of 

the maximum value. As presented in Section 2.4.1.6, the time until a pressure wave in 

one dimension would arrive at the support should be: 

s10404.0

2400

1033

5.1 3

9





c

L
t  

(3-45) 

The time until a shear wave would arrive should be: 

s10627.0

2400)2.01(2

1033

5.1 3

9








c

L
t  

(3-46) 

Large divergence between the theoretical wave speed and the analysis were found. 

The first case should correspond very well to a pressure wave and the second case to a 

transverse wave. Both cases have approximately the same arrival time. It is 0.21 and 

0.22 ms respectively. For case one a major shock front seems to arrive approximately 

at the theoretical arrival time but some disturbance has arrived before. This could be 

due to some numerical errors in the calculation.  
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Figure 3.10. Support reaction over time for the two experiments. The blue dotted line 

represent the theoretical arrival time for the waves.  

The wave speed in the beam model seems to be independent of Poisson’s ratio. The 

same result is obtained if no transverse deformation is allowed, i.e.  = 0. This 

suggests that the wave speed is calculated as the speed of a pressure wave when using 

beam elements regardless of the actual speed. This should not be true for a shear wave 

and therefore it may not be appropriate to model the wave propagation with beam 

elements. 

The wave speed depends on Young’s modulus, E, of the material as seen in 

Section 2.4.1.6. The elastic modulus was therefore varied while the area and bending 

stiffness was kept constant, according to scheme 1 in Section 3.5.2, in order to see 

how the arrival time to the support changed. The elastic modulus was increased 25 

times, which gives the following input variables. 

cc
I

IEE 5'
25

'25'   (3-47) 

The result is visualised in Figure 3.11. According to equations (3-45) and (3-46) with 

parameters from equation (3-47) the arrival time should be approximately 0.08 ms for 

a pressure wave and 0.125 ms for a shear wave. The theoretical values are represented 

with a blue dotted line. Again, it can be seen that the support reaction has some 

disturbance before the major front arrives. The shear wave does not seem to be 

modelled appropriately using beam elements.  
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Figure 3.11. The reaction force over time for a beam with a higher Young’s modulus, 

E’ = 25E. 

It was not possible to model a much lower elastic modulus since the program 

interprets the high moment of inertia as a deep beam section, which does not give 

adequate values using Euler-Bernoulli beam theory, compare reasoning in 

Section 3.5.2. This is a modelling limitation but will not influence the results in 

further analyses since Young’s modulus is always higher and the moment of inertia is 

always lower.   

 

3.5.4.3 2D-solid elements 

The wave speed may not be modelled correctly with linear beam elements and in 

order to get a better understanding, the wave speed was also studied using 2D solid 

plain stress elements. It is also interesting to study whether the model distinguishes a 

shear wave from a pressure wave. The influence of Poisson's ratio is also studied to 

see how much it influences the wave speed for the two cases. 

To study the wave speed the simple cantilever beam of length 1.5m was used, see 

Figure 3.12a. A load in the form of a pressure load is applied to the tip of the beam. 

This load is applied in the axial direction to the beam, see Figure 3.12a. To measure 

the wave speed the reaction in the horizontal direction of the beam is studied at the 

support. For this case the influence of Poisson's ratio is very small, this can be seen in 

Figure 3.12b. The wave speed is higher when studied in the FE-analysis compared to 

the expected theoretical value. The theoretical wave speed for the pressure wave is  
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It can also be observed that the influence of Poisson’s ratio is very small leading to 

that this is presumably a pressure wave. 
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Figure 3.12. The wave speed when using 2D-solid elements. The dot in (a) indicates 

in which point the reaction is measured. 

When studying the shear wave the same cantilever beam model is used. The load is 

applied as a shear load at the tip of the beam and is distributed along the whole height 

of the beam, see Figure 3.13a. The reaction in the vertical direction is then studied at 

the support.  

This study shows that that the influence of Poisson's ratio is higher for the shear wave 

than a pressure wave, see Figure 3.13b. This is expected due to the influence of 

Poisson's ratio when calculating the shear modulus. The fact that the wave speed 

obtained in the second analysis is lower strengthens the assumption that it is a shear 

wave not a pressure wave. As for the first case the wave speed obtained in the FE-

analysis is higher compared with the theoretical value. The theoretical shear wave 

speed is 
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Figure 3.13. The modelling of a shear wave. Larger difference between the model 

with v = 0.2 or v = 0 implies that shear action is of more importance. 

 

3.5.4.4 Influence by choice of time step 

The wave propagation problem was investigated in contact with ADINA support, 

ADINA (2012). ADINA suggested that the initial disturbed region before the wave 

front occurs because the critical time has not been used and therefore numerical errors 

occur. According to ADINA, using a time-step close to the critical time step is vital in 

order to capture the wave properly. It is also suggested that the implicit method should 

be carried out with the Bathe Composite Method, which provides better results. The 

shear wave propagation is currently a researched subject ADINA (2012), and a 

straightforward recommendation for the critical time step for a shear wave does not 

exist. Reasonably, it would be the element length over the shear wave speed but this 

relationship could not be found. The critical time step is the time the wave propagates 

one element, ADINA (2010) and defined as 

c

L
t e

c   (3-52) 

Where Le is the element length and 



G
c

E
c BeamBeam  or  (3-53) 

  

G
c

E
c DsolidDsolid 


 222 or

1  
(3-54) 

for beam and 2D-solid elements, respectively, according to ADINA (2010). 

The chosen time step affects the wave propagation considerably. Figure 3.14 shows 

the support reaction when the critical time step is used. As seen, the agreement 

between the theoretical wave front (blue dotted line) and the wave front in ADINA is 

good. The previous found numerical errors before the wave front are decreased 

considerably. However, it does not seem like the shear wave can be well explained by 

beam elements and this is further supported by the fact that Poisson’s ratio does not 

affect the answer. 
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Figure 3.14. Support reaction when using the critical time step for a) beam elements 

with axial force, b) beam elements with transverse force, c) solid 2D-

elements with axial force and d) solid 2D-elements with transverse 

force. 

Since wave propagation affects the result it is necessary to model the wave correctly. 

However, other simplifications may induce problems when modelling the wave speed 

but it is important to know the real solution.   

 

3.5.5 Integration schemes 

ADINA can use two integration schemes; the implicit method and the explicit 

method. For the implicit time integrations the trapezoidal rule is used. This method is 

also referred to as the constant-average acceleration method of Newmark, which is 

obtained if the Newmark method is used and the parameters  and are set to 0.5 and 

0.25, respectively. For explicit time integration the Central Difference Method is used. 

This is described in Appendix A and is the Newmark method with  = 0.5 and  = 0. 

The explicit method is a faster method but has a small critical time step that has to be 

fulfilled in order to get stable results. Since analyses of explosions require small time 

steps anyways, though, it can be beneficial to use the explicit method in more 

complex analyses. Augustsson and Härenstam (2010) showed that there is not a 

significant difference when using a 2D beam element, but the trapezoidal rule 

integration scheme is preferable when 3D beam elements are considered.  

When using the explicit method for a linear elastic beam modelled with beam 

elements, the deformations did not correspond well to the expected one using hand 

calculations or the implicit method, see Figure 3.15. The latter two, though, agree 
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very well as also seen in for example previous Master’s theses. According to ADINA, 

this is due to the fact that the explicit method always uses a lumped mass matrix while 

the trapezoidal rule uses a consistent mass matrix. However, using the implicit 

method with a lumped mass matrix does not correspond to the explicit solution. An 

interesting observation is that there is a very good agreement between the simplified 

SDOF method using the transformation factor mF =1 and the explicit solution.  

This problem is identified but will not be treated further in this thesis and the implicit 

method will be used in further analyses. A recommendation for further work is that 

care should be taken when the explicit integration scheme is used. 

 

 

Figure 3.15. ADINA’s two integration schemes give different results. The explicit 

method always uses a lumped mass which gives incorrect values. 

 

3.5.6 Output 

Section forces can be extracted in two ways; either by using section forces in the 

integration points or as nodal forces. Section forces can only be used when the 

response is linear elastic. Otherwise, nodal forces must be obtained in every element 

node. Therefore, nodal forces have been used and further treated in other programs. 

 

3.5.6.1 Shear force 

The shear force is constant within an element as shown in Figure 3.16. The constant 

shear force corresponds to the shear force in the centre of the element. This means 

that the nodal force is the same in both element nodes but with opposite sign because 

of ADINA’s sign convention. The shear force has been taken as the nodal force in the 

first node of every element and positioned in the centre of the element.  
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Figure 3.16. ADINA gives output in the nodes. The analytical support reaction can be 

obtained by interpolation in static cases. This is impossible for dynamic 

cases where the shear force does not vary linearly. 

The nodal force in the first node of the element closest to the support is not the same 

as the support reaction.  For a static case, the nodal forces in two nodes can be used to 

linearly interpolate the support reaction. However, if the shear force distribution is 

non-linear, as it is for a dynamic case, this cannot be done. Instead, the actual value of 

the support reaction can be found in ADINA and used for the support reaction. 

The support reaction is slightly higher than the nodal force in the first element at the 

beginning of an impulse loading and then decreases to obtain a lower value. The 

results should reasonably agree better if more elements are used. 30 elements seem to 

have adequate accuracy compared to 100 elements as shown in Figure 3.17. The 

support reaction is exactly the same for both choices of number of elements. 

 

Figure 3.17.  Comparison between support reaction and shear force in node closest to 

the supports for different number of elements  
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3.5.6.2 Moment 

The moment varies linearly over an element and has been taken as the moment in the 

first node of every element and positioned in the node. The moment in a structure 

with plastic response can never exceed the maximum moment capacity. However, as 

will be seen in Chapter 5, the nodal moment can be higher for some time steps. The 

reason for this is unknown but is believed to depend on numerical errors in ADINA. 

The stresses in an analysis with the same input data never exceed the input fictional 

yield stress calculated in Section 3.5.3.  

Nodal moments are only a post-process of the results and the analyses use stresses 

when calculating the result. Consequently, the actual result remains accurate. 

Figure 3.18 shows the moment in midpoint when using nodal moments or by 

calculating a moment from corresponding stress. The curves follow each other, but 

the nodal moment exceeds the maximum at two points. The moment calculated with 

the stress distribution is never greater than the maximum moment. This raises the 

question that the moment distributions should possibly be examined with stresses 

instead of nodal moments. 

 

Figure 3.18. Comparison between nodal moment results and moment calculated from 

the stress distribution. 
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4 Displacement 

4.1 Midpoint displacement 

4.1.1 Elastic analysis 

The SDOF-model represents the deformation obtained by the FE-analysis well when a 

linear elastic material behaviour is considered. The only pronounced difference is that 

the SDOF method gives a smooth curve while the oscillations from the FE-analysis 

are uneven. The result for the linear elastic material behaviour in state I and II are 

shown in Figure 4.1. It can be seen that the state II section, which is less stiff, gives a 

higher deformation but oscillates with a lower frequency. The simplified hand 

calculation method generally gives a slightly larger maximum deformation than what 

can be obtained in the more accurate methods due to the simplification of a 

characteristic impulse load. Very good agreement is also found for less impulsive 

loads but they, as expected, diverge more from the hand calculation since the load is 

less like a characteristic impulse load. 

 
 

 
            (a)                                      (b)  

  
 

Figure 4.1.   Displacement versus time for different analyses for a concrete beam 

with linear elastic response modelled in a) state I and b) state II 

subjected to a load with peak pressure 5000 kPa and load duration of 

1.12 ms. 

The small oscillations in the midpoint deformation in the FE-analysis occur because 

the FE-analysis takes higher modes of vibration into account, see Figure 4.2. The 

SDOF-model does only consider the fundamental mode of vibration, which makes it 

smooth. 

 
 1:st mode   2:nd mode       3:rd mode 

 

Figure 4.2. Modes of vibration for a simply supported beam. 
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4.1.2 Ideal plastic analysis 

There is a significant divergence between the FE-analysis, equivalent SDOF-model 

and hand calculations for the ideal plastic material model. These convergence 

problems have also been encountered in e.g. Augustsson and Härenstam (2010). The 

difference between the SDOF analysis and the hand calculation method is dependent 

on the assumption of a characteristic impulse load. According to Section 2.4.2.7, the 

error in displacement for an ideal plastic structure, can be evaluated from 

 8.24
605

35000





m

peak

F
R

F
  (4-1) 

For a triangular load this corresponds to an error in displacement of approximately 5-

10 %. For decreasing F, the error increases. This means that for a less impulsive load, 

load case 3, the difference should increase. This is also the case in Figure 4.3 and 

Figure 4.4, which show the response for load case 1 and 3, respectively. 

The difference between the SDOF calculations and the FE analysis may arise due to 

an incorrect assumption of the deformation shape. Consequently, the transformation 

factor used in the SDOF-model will be underestimated and the maximum deflection 

overestimated. The midpoint deformation for an ideal plastic beam using the three 

approaches can be seen in Figure 4.3. The SDOF and FE-solutions agree better if load 

case 3, with lower peak pressure and longer duration is used, see Figure 4.4. However, 

there is still a significant divergence that must be investigated. 

 

 

Figure 4.3. Displacement versus time for different analyses for a reinforced 

concrete beam with ideal plastic response subjected to load case 1. 

0

10

20

30

40

0 10 20 30 40 50

D
is

p
la

ce
m

en
t,

 u
s

[m
m

]

Time, t [ms]

Hand Calculations
SDOF
FE analysis



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:103 
77 

 

Figure 4.4. Displacement versus time for different analyses for a concrete beam 

with ideal plastic response subjected to load case 3. 

 

4.1.3 Elasto-plastic analysis 

The elasto-plastic model is the most realistic model and consequently the most 

interesting. The deflection in an elasto-plastic SDOF-model can be found by 

combining the linear elastic and the ideal plastic material models. The main problem 

in the elasto-plastic simplification is which transformation factors should be used. 

Three alternatives are studied here: 

Elastic response: 
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The midpoint deformation for the different alternatives is shown in Figure 4.5 for load 

case 1 and in Figure 4.6 for load case 3. 
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Figure 4.5. Displacement versus time for different analyses for a concrete beam 

with elasto-plastic response subjected to load case 1. 

 

Figure 4.6. Displacement versus time for different analyses for a concrete beam 

with elasto-plastic response subjected to load case 3. 
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This has been seen as a coincidence resulting from combining incorrect assumptions, 

Johansson (2012). Knowing that this is not correct it can be used as a crude 

simplification. It is better for less impulsive loads, load case 3. Nevertheless, this is 

not sufficient accuracy and more precise transformation factors can be found from a 

detailed FE-analysis similar to the simpler material models. This is done in 

Section 4.4.4. 

 

4.2 Deformation shape 

4.2.1 Introduction 

The transformation factors come from an assumed displacement shape. Therefore, it is 

of interest to investigate the real deformation shape and compare it to the assumed 

theoretical deformation shape. This has been seen as a potential reason why the SDOF 

solutions have not agreed perfectly with the more detailed FE analyses. The 

deformation shapes that vary with the peak load and time duration have been taken 

out from FE analyses for every time step and are then compared to get better 

understanding of the beam’s behaviour when it is subjected to an impulse load.  The 

deformation shape for many time steps are shown in Appendix G. 

 

4.2.2 Elastic analysis 

The initial response for a linear elastic beam is not the same as that assumed. This is 

seen for all load cases although the difference is greater for a more impulsive load, 

load case 1 than for load case 3, see Figure 4.7 and Figure 4.8. Notice the different 

scales. The early deformation is characterised with a near rigid body motion. 

 

 

Figure 4.7. The early deformation shape for a linearly elastic beam subjected to 

load case 1, Ppeak = 5000 kPa and t = 1.12 ms. 
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Figure 4.8. The early deformation shape for a linearly elastic beam subjected to 

load case 3, Ppeak = 1250 kPa and t = 4.48 ms. 

In order to investigate if the beam follows a rigid body motion this was compared by 

modelling the rigid body motion in the FE analysis for the same load but without 

supports, see Figure 4.9. In this is can be observed that some parts of the beam will 

eventually start to move faster than a rigid body motion after 0.5 milliseconds. Two 

arcs start to form close to the supports and progress towards the centre where they 

come together and the assumed elastic deflection shape will emerge at around 2 

milliseconds. The centre part has now deformed more than a rigid body motion. The 

reason for why some parts move faster than a rigid body motion is unknown but is 

believed to depend on the force propagating through the beam in a wave motion. The 

duration of this behaviour is approximately the same as for the wave propagating 3 

metres, i.e. the length of the beam.  
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Figure 4.9.  Comparison between a rigid body motion and the elastic deformation. 

The numbers denote which time, in milliseconds, the deformation 

occurs. 

A parameter study was performed according to scheme 1 in Section 3.5.2. The 

bending stiffness, EI, was kept constant by varying Young’s modulus, E and the 

moment of inertia I. These models generate the same response in static analyses, 

while the dynamic analyses differ. The wave speed depends on Young’s modulus and 

the influence of wave propagation can therefore be investigated by implementing this 

scheme. A higher Young’s modulus will make this wave form occur earlier. Problems 

were encountered when decreasing Young’s modulus; this is discussed in 

Section 3.5.2. This means that the initial deformation shape depends on the wave 

speed. When increasing Young’s modulus, the wave speed increases and the wave 

propagates faster through the structural element. 

 

4.2.3 Ideal plastic  

The initial deformation shapes have been investigated for the ideal plastic material 

model. It can be seen that there is a very pronounced rigid body motion in the centre 

when subjected to load case 1, see Figure 4.10. The length of this zone decreases and 

the deformation will eventually be concentreated in the midpoint. It takes more than 

5 ms until a concentrated plastic hinge has formed in the centre and the deformation 

shape is somewhat like that assumed for plastic response. The significance of the rigid 

body motion is decreased for a less impulsive load, load case 3, as seen in 

Figure 4.11. 
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Figure 4.10.  Deformation shape versus time for a concrete beam with ideal plastic 

response subjected to a load with peak pressure 5000 kPa and a load 

duration of 1.12 ms. 

 

 

Figure 4.11.  Deformation shape versus time for a concrete beam with ideal plastic 

response subjected to a load with peak pressure 1250 kPa and a load 

duration of 4.48 ms. 
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4.2.4 Elasto-plastic analysis 

The elasto-plastic deformation picture is the most realistic one and can be explained 

with the two simplified material models in Section 4.2.2 and 4.2.3. The initial 

deformation shape is similar to the one obtained in the linear elastic case until the 

structure starts to yield. Close to the edges the beam will be displaced more than in the 

centre. Yield will not start in the centre as expected in a static case. It will start closer 

to the edges and move towards the centre. This is further shown when the moment 

and shear distribution is investigated in Chapter 5. 

The deformation shape for load case 1 is exactly the same as for the linearly elastic 

case for the first 2.5 ms, see Figure 4.7 for load case 1 and Figure 4.8 for load case 3. 

The deformation shape is then affected by plasticity somewhere in the beam.  

After the initial elastic deformation the response will be more similar to the plastic 

response. A concentrated plastic hinge will eventually form in the midpoint of the 

beam as seen in Figure 4.12. 

  

Figure 4.12. Later deformation shape for the elasto-plastic material model subjected 

to load case 1.  

 

4.3 Energy balance 

4.3.1 Introduction 

The energy balance in the FE and SDOF analyses was compared. In line with the 
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energy, We. The sum of the internal and kinetic energy should be equal to the external 

energy to have balance in the system. 
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The external energy is simply the force times the displacement. This is done in the 
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displacement. The kinetic energy is also found easily by multiplying the square of the 

velocity in every node with the mass for that node, see equation (4-8). In the SDOF 

method this is done by multiplying the equivalent mass with the square of the system 

point velocity. The last energy is the internal energy. This can be calculated as the 

integral of the moment times the change in curvature over an element if no 

consideration is taken to shear or normal deformations, see equation (4-9). In the 

SDOF model it is simply the integral of the resistance times the deformation. The 

formulas are summarised in Table 4.1. 

 

Table 4.1. Definition of work for the FE analysis and the SDOF model 

respectively. 
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It is important to realise that the energy in the system is proportional to  
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and that the deformation is proportional to  
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This can give a higher energy level although the deformation is lower. For instance, if 

the transformation factors are increased with the same factor, say , 
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(4-13) 

This will make the energy increase while the deformation of the midpoint remains 

unaffected.  
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4.3.2 Elastic analysis 

The theoretical external work for the state II linearly elastic model can be determined 

J994964.0
2880788.02

8400 2




 ke WW  (4-14) 

The energy in the two systems can be seen in Figure 4.13 and Figure 4.14. The first 

observation is that the energy in the FE-analysis is higher than that expected using 

hand calculations. The kinetic energy is very similar but the system gets some internal 

energy which makes the total work somewhat larger than the theoretical work 

obtained using hand calculations. It is shown in Appendix E, in which several load 

cases are examined, that for a load more similar to a characteristic impulsive load, 

load case 0 in Figure 3.1, the total work is even higher while a load more similar to a 

static load has a better agreement with hand calculations. The external energy is in 

equilibrium with the internal energy. This is believed to depend on that the 

transformation factors are higher for a very impulsive load, while they are more 

similar to the theoretical transformation factors for a less impulsive load, load case 3. 

The total work in the FE-analysis is reasonably well described by the equivalent 

SDOF model as seen in Figure 4.13 and Figure 4.14. The total work is slightly lower 

and much smoother in the SDOF model than in the FE-analysis. This is again since 

the SDOF model only considers the first mode of vibration. The first peaks of the 

kinetic energy in the two systems are almost identical. The energy in the SDOF model 

is the same as the theoretical energy. 

 

Figure 4.13. The energy balance in the FE analysis for load case 1.  
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Figure 4.14. Energy balance in the SDOF model for load case 1. 

 

4.3.3 Ideal plastic analysis 

Similarly to the elastic case, the work has been investigated for the plastic case. The 

theoretical external work can be estimated to 
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As for the elastic case, the total work is slightly underestimated with hand calculations 

but acceptable agreement is obtained. The kinetic energy, Wk, is much lower than 

what the theoretical solution predicts, which means that the structure absorbs more 

energy as internal energy in the beginning; i.e. the load intensity is lower than that 

corresponding to a characteristic load. The structure decreases its velocity and 

eventually the external energy is balanced with internal energy. 

 

Figure 4.15. Energy balance for the FE-analysis with ideal plastic response. 
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The energy in the SDOF model is lower than in the FE analysis. This is because the 

actual transformation factors are higher than what the theoretical value suggests, 

compare with reasoning in Section 4.3.2. As a result all the energies will be lower. 

The SDOF energy is also lower than the theoretical energy. This is probably a 

consequence of that the internal energy increases very fast and that it cannot be said 

that all energy is transformed to the structure as kinetic energy. 

 

Figure 4.16. The energy balance in the SDOF-model. 
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where the theoretical mF is initially underestimated, which makes the deformation 

become larger. The work depends on  
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and this transformation factor ratio is underestimated with the theoretical values, 

compare reasoning in equations (4-12) and (4-13). 
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SDOF analyses, see Figure 4.18, Figure 4.19 and Figure 4.20, and that the external 

energy is not the same as the kinetic energy. 

 

Figure 4.17. The energy balance for an elasto-plastic beam subjected to load case 1 

analysed with FE. 

The energy balance is calculated for the SDOF-model with different transformation 

factors, see Figure 4.18, Figure 4.19 and Figure 4.20. Common for all cases is that the 

energies are lower than the energy in the FE-model. It is lowest for the plastic 

transformation factor. This is due to that the transformation factors for this assumption 

are most incorrect. 

The methods that use the elastic transformation factor have the same external and 

internal work until it changes to the plastic transformation factor in the latter method. 

There is a sudden drop in the kinetic energy at this time. This results in an unbalanced 

energy while the other two methods keep the balance between total work and external 

work. 

 

Figure 4.18. Energy balance for an SDOF solution with transformation factors 
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Figure 4.19. Energy balance for an SDOF solution with ideal plastic transformation 

factors.  

 

 

Figure 4.20. Energy balance for an SDOF solution using theoretical elastic 

transformation factors until the maximum resistance is reached and then 

by using theoretical plastic transformation factors. 
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(4-19) 

where n is the number of free nodes, i.e. all nodes except the support nodes. Li is the 

length of an element and is constant for every element which means that it can be 

expressed as the total length divided with number of elements. ui is the displacement 

in the i:th node and us is the deformation of the system point, in this case the centre. 

These transformation factors are only of interest when the energy is considered as 

shown in Section 2.4.2.4. 

The load-mass transformation factor can then be found as 
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
   (4-20) 

The time dependent transformation factors are also shown in Appendix F. The 

individual transformation factors for the load and mass respectively are also shown 

here. 

 

4.4.2 Elastic analysis 

The midpoint deflection for assuming linear elastic response can be very well 

approximated with an equivalent SDOF-model; the solutions agree very well as seen 

in Section 4.1.1. As a result, the currently used transformation factor should be a good 

approximation of the elastic behaviour. The theoretical value of the load-mass 

transformation factor for elastic deformation is  

788.0mF  (4-21) 

If the transformation factor is calculated from the resulting deformation at every time 

step, seen in Figure 4.21, the theoretical value of the transformation factor agrees very 

well after a few milliseconds for all load cases. In addition, the agreement is improved 

if the load has a lower peak pressure and longer duration, i.e. load case 3.  
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Figure 4.21. Transformation factor for elastic material model obtained from FE-

analysis as a function of time for a) Load case 1, b) Load case 2 and c) 

Load case 3. 

As shown in the Figure 4.21, there is a peak in the first few milliseconds. This occurs 

for all load cases and is of approximately the same magnitude and duration. The 

displacement shape at this time span is different to the shape assumed for an elastic 

deflection and is more similar to a rigid body motion, see Figure 4.9. 

However, this first peak in the transformation factor does not seem to have a 

significant influence on the midpoint deformation since the agreement is very good 

for the elastic case even when using a constant value of mF. It can also be noted that 

the transformation factor goes quickly towards the theoretical value. 

 

4.4.3 Ideal plastic analysis 

The midpoint deformations in an SDOF model and an FE-analysis diverge 

significantly for the ideal plastic case. If the deformation shape is obtained from 

ADINA, a transformation factor can be calculated for every time step. In Figure 4.22, 

the transformation factor mF is shown for different load cases. 
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Figure 4.22.  The transformation factor κmF versus time compared with the plastic 

theoretical values for a concrete beam with ideal plastic response 

subjected to a) load case 1, b) load case 2 and c) load case 3. 

It appears like the first few milliseconds have a higher value of the transformation 

factor for all load cases. The transformation factor is initially higher for a more load 

case 1 but is not as high as for the linear elastic case, in Section 4.4.2. The duration of 

the higher value of the transformation factor is longer and the actual value approaches 
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the theoretical but does not fully reach it in the first 30 milliseconds. Again, a more 

intense load, load case 1, has a higher value and diverge more from the ideal plastic 

theoretical solution, which is 0.667. The final value is 0.731 and the decrease has 

ceased for load case 1. For the longer load duration, load case 3, a value of 0.707 is 

the final value. Therefore, it can be stated that the deformation shape is dependent on 

how intense the load is. If the load would be completely static, the theoretical 

transformation factor would be in perfect agreement with the obtained result. 

Augustsson and Härenstam (2010) investigated this problem briefly, and found that a 

modified value of the transformation factor κmF should be taken as 0.771 for a 2.7 

metre long and 0.35 metre high beam subjected to load case 1. Their beam had a 

lower internal resistance value and it is of interest to investigate if the transformation 

factor is affected by the maximum capacity.  

If the transformation factor was changed so that it fitted the ideal plastic deformation 

curve, the best agreement was found when mF = 0.771, i.e. the same as Augustsson 

and Härenstam (2010). Hence, this implies that the ultimate resistance has no 

significant influence on the transformation factors. The transformation factor 

decreases with the load magnitude. For load case 2 it is 0.752 and load case 3 it is 

0.724. Therefore, the transformation factor seems to be dependent on the load and not 

the ultimate resistance. The reason for why these two values agree is further studied in 

Section 4.5 where a time dependent transformation factor is implemented.   

 

Figure 4.23. Midpoint deformation for an ideal plastic beam subjected to load case 1, 

assuming a constant transformation factor of 0.771. 

 

4.4.4 Elasto-plastic analysis 

The different transformation factors obtained from the FE-analyses for the elasto-

plastic material behaviour are compared both with the plastic and elastic theoretical 

values. This indicates that using the theoretical plastic value will generate a result on 

the safe side and give a larger deflection. As expected, though, the real values of the 

transformation factors are somewhere in between the theoretical values. For very high 

peak pressures and short load duration mF will converge towards a mean value 

between these theoretical values, see Figure 4.24a. In contrast, for a beam subjected to 
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a lower load with longer duration, mF converges towards a lower value which 

corresponds more to the plastic theoretical value, see Figure 4.24b and Figure 4.24c. 
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Figure 4.24. The transformation factor κmF versus time compared with the elastic and 

plastic theoretical values for a concrete beam with elasto-plastic 

response subjected to a) load case 1, b) load  case 2 and c) load case 3. 

The early peak can be recognised as the near rigid body motion that takes place soon 

after load arrival, also seen in the linear elastic case. Subsequently, the beam starts to 

plasticise and the value of the transformation factor approaches a value between the 

theoretical plastic and elastic values respectively.  

 

4.5 Implementation of varying transformation factors into 

the equivalent SDOF model 

4.5.1 Introduction 

The time dependent transformation factors have been implemented in the SDOF 

model in order to see if they would generate a better agreement with the FE analysis. 

The time dependent transformation factors are taken from the transformation factor 

figures for every material model and load case in Section 4.4. The equation of motion 

can be written as 

)()( tFkuumtmF   (4-22) 

 

4.5.2 Preservation of energy 

Initial investigations of this subject showed that the deformations became smaller 

when using the time dependent transformation factors. This is on the unsafe side. This 

is believed to depend on two reasons. Firstly, the mass is increased when the impulse 

load is working on the structure. This means that the acceleration will be lower 

according to Newton’s second law, see equation (2-4). Secondly, the kinetic energy is 

changed every time the mass is changed since it is proportional to the mass.  

It is clear when investigating the energy balance that something happens when time 

dependent transformation factors are used, see Figure 4.25. The energy level is 

initially higher when the transformation factors are high but decreases suddenly when 

they decrease as seen in Section 4.4. This creates unbalanced energy levels and must 
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be compensated with energy preservation. This is unrealistic since energy cannot 

disappear in the structure and gives a completely wrong deformation. 

 

 

Figure 4.25. Energy balance in an SDOF model with varying transformation factors. 

A sudden drop occurs when the transformation factors decreases. 

The sudden drop in energy can be compensated by preserving the kinetic energy, see 

Figure 4.26. This is done by calculating the deformation and corresponding velocity 

with the transformation factor for the previous time step and correct these by 

increasing the velocity with the square root of the change in transformation factor of 

the load. This is further explained in Appendix D. The energy balance will be shown 

for all material models in Sections 4.5.3, 4.5.4 and 4.5.5. 

 

Figure 4.26. Energy balance when preserving the kinetic energy according to 

Appendix D. 
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4.5.3 Elastic analysis 

The theoretical linear elastic analyses have a good agreement but for 

comprehensiveness and understanding of the more realistic material models it is 

desirable to vary the transformation factors also in the elastic case.  

If the varying transformation factors are used without preserving energy, the 

deformation of the midpoint is lower than in the simplified method and the FE-

analysis as shown in Figure 4.27. If the kinetic energy is preserved, it can be seen that 

a very good agreement between the FE analysis and the SDOF model is obtained. 

  

Figure 4.27. Displacement in midpoint when varying the transformation factors.  

Since the transformation factors are changed to a higher value initially, the external 

energy becomes higher. The energy in the theoretical SDOF model is lower than the 

FE analysis and the change of transformation factors should make the energy levels 

agree better. However, the energy is slightly higher in the SDOF system than in the 

FE analysis, see Figure 4.29 and Figure 4.30. As a result, a small difference in the 

displacement can occur and, as seen in Figure 4.27, it is somewhat higher than in the 

FE-analysis. This could be a consequence of not capturing every displacement shape 

perfectly and the corresponding transformation factor. 

The energy preservation is shown in Figure 4.28 and Figure 4.29. As seen the 

maximum level is not affected, which supports the hypothesis that it is the estimation 

of transformation factors that causes the slight overestimation of the maximum energy 

in the system. 
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Figure 4.28. Time dependent transformation factors cause a sudden drop in energy. 

  

Figure 4.29.  Preserved energy in the SDOF model with time dependent 

transformation factors. 
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Figure 4.30. The energy balance in the FE-analysis. The maximum level is slightly 

lower than what is obtained with SDOF model. 

 

4.5.4 Ideal plastic analysis 

Similar to the elastic case transformation factors are found from the FE analysis and 

used in the SDOF approach. As a result, the displacement decreases since kinetic 

energy “disappears” when the transformation decreases, see Figure 4.31. The energy 

decrease is not as sudden as for the linear elastic case since the transformation factors 

decrease gradually. If the energy is preserved, Figure 4.32, as for the elastic case, a 

very good agreement between the displacement in the SDOF model and the 

FE analysis is found, see Figure 4.33. The total energy is also here overestimated, 

compare reasoning in Section 4.5.3. For comprehensiveness, more load cases can be 

seen in Appendix E. 

 

Figure 4.31. Energy balance when time dependent transformation factors are used 

without preserving energy levels.  
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Figure 4.32. Preserved energy when using time dependent transformation factors. 

 

Figure 4.33. Displacement when the transformation factors are varied. 

 

4.5.5 Elasto-plastic analysis 
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the theoretical elastic to the theoretical plastic ones. This gave lower midpoint 

deformation and this is also the case when using the transformation factors from the 

FE analysis, see Figure 4.34. When using time dependent transformation factors from 

the FE analysis and preserving the energy, a very good agreement for the midpoint 
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If the energy balance is investigated, there is a clear drop where the transformation 
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Figure 4.36. 
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Figure 4.34. Midpoint displacement vs. time when varying the transformation factors. 

 

Figure 4.35. Energy balance before preserving energy. 

 

Figure 4.36. Energy balance when preserving energy. 

0

10

20

30

40

0 10 20 30 40 50

D
is

p
la

c
e
m

e
n

t,
 u

s
[m

m
]

Time, t [ms]

FE

Varying

Varying             
with Energy loss

mF

mF

0 

5000 

10000 

15000 

0 10 20 30 40 50 

E
n

er
g

y
, 
W

 [
J

] 

Time, t [ms] 

Wk 

Wi 

Wtot 

We 

0

5000

10000

15000

0 10 20 30 40 50

E
n

e
r
g

y
, W

 [
J

]

Time, t [ms]

Wk
Wi
Wtot
We



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:103 
100 

The same procedure is carried out for the case when the transformation factor changes 

from the theoretical elastic value to ideal plastic when the internal resistance has 

reached its maximum value in the SDOF model. This also gives very good agreement, 

which is better than using the transformation factors from the FE analysis. This shows 

that this simple modification is sufficient to increase the accuracy in the elasto-plastic 

analysis. 

 

Figure 4.37. Midpoint displacement when preserving energy and using time 

dependent transformation factors with theoretical elastic values when 

the SDOF model has elastic response and plastic theoretical values 

when it has plastic response. 

 

4.6 Discussion of results 
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when using theoretical transformation factors and does never reach the theoretical 

value. Therefore, the influence of the transformation factors become larger and could 

be described with a linear decreasing function. The elastic transformation factors can 

be seen as a good approximation already. 

It is interesting to discuss how the wave actually propagates through the beam. The 

proposed method makes the solution agree well with the FE-analyses. The question is 

whether the FE-analyses describe reality well enough. It is shown in Section 3.5.4 that 

the wave propagation in a model made with beam elements and solid 2D elements 

differs. This is especially the case with shear waves that is not described well at all 

with beam elements. A critical time step, where the wave only propagates one element 

per time step, must be used in order to capture the wave properly. There is however 

no recommendation from ADINA which critical time step that should be used for a 

shear wave. The developed method for implementing transformation factors can 

however be used for other displacement shapes. Consequently, the above method can 

be used, although the deformation shapes are not correctly described. 

The above discussion only concerns the deformations. It is also indispensable to 

describe the section forces and the support reaction. They are influenced by the 

deformation shape and consequently the transformation factors. The influence of time 

dependent transformation factors on section forces and support reaction will be 

investigated and discussed in Chapters 5 and 6. 
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5 Moment and shear force 

5.1 Introduction 

Ultimately, the maximum shear force and moment effect are of interest in the 

structure. Therefore, a study on how the moment and shear force are distributed in the 

beam has been carried out. As will be seen in this chapter, they can differ markedly to 

the expected distributions for static loadings.  

When the structure has a plastic or elasto-plastic response, the moment is limited to 

the maximum moment and the structure dissipates energy by plastic deformation. 

Therefore, in these cases, the failure criterion is displacement rather than moment 

resistance. Nevertheless, the moment distributions are still of interest since they are 

used for reinforcement arrangement. However, if the structure is assumed to have an 

elastic response it is necessary to check the moment capacity.  

The shear force must be checked for all material models. The maximum shear force is 

not necessarily found at the supports, and the distribution may differ significantly to 

that predicted in an equivalent static case. 

Johansson and Laine (2009) suggest that a static equivalent load can be used in order 

to design the structure for moment and shear forces. This is applied to the structure as 

a uniformly distributed load and section forces can be found. This method is here used 

in order to compare with results from FE analyses.  

The shear and moment distribution is shown together with the deformation shape for 

many time steps within the first oscillations in appendix G. 

 

5.2 Elastic analysis 

The shear and moment distributions have been found for the linear elastic beam. This 

is done by finding the nodal forces and moments for many time steps. The 

distributions are initially not at all similar to that obtained in a static case.  

The moment in midpoint is shown in Figure 5.1. The moment in the midpoint is very 

small the first millisecond and then it increases to the maximum value around the 

same time that the maximum deformation is the largest. It can be seen that the 

moment is approximately the same during the second oscillation. This is not realistic 

since the beam has some damping and the value at the second oscillation will be 

smaller. Also the negative moment is as large as the positive 
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Figure 5.1. Midpoint moment for a linear elastic beam. 

In Section 4.2.2, it is shown that the initial deformation shape is different to what 

would be expected in a static load case. The largest deformations start closer to the 

supports and it is not until after about 2 ms that the largest displacement can be found 

in midpoint. The moment is directly influenced by curvature and will consequently 

develop from supports and progress to the centre. This is shown in Figure 5.2. 

Initially, the moment is slightly negative in the midpoint until. After about 1.5 ms the 

moment starts to decrease in the sections closest to the supports and the moment in the 

centre increases. This continues after about 2.5 ms and a somewhat expected moment 

distribution is obtained. 

 

Figure 5.2. The moment distribution early after load arrival. The numbers denotes 

the time for the adjacent or, in the centre, the above line. The moment 

develops from the edges towards the centre. 
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Between 2.5 ms and the time for maximum displacement, as seen in Figure 4.1 at 

about 8 ms, the moment distribution is relatively similar to the expected, see 

Figure 5.3. At maximum deformation, the same peculiar distribution as the initial 

response occurs, where the centre part oscillates between the adjacent parts. 

  

Figure 5.3.  Moment distribution at the time t=8 ms. 

The support reaction is shown in Figure 5.4. Initially, a peak occurs within the first 

milliseconds but the maximum value is not obtained until the maximum deformation 

is reached. It can also be seen that the reaction force is the same in both direction 

since it is an elastic oscillation. The support reaction is further investigated in 

Chapter 6.  

 

Figure 5.4. Support reaction for a linear elastic beam. 
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Figure 5.5. Shear force distribution soon after load arrival. High shear stresses 

occur close to the supports. 

For some time increments the reaction at the support is lower than the adjacent value 

in the centre of an element. This is believed to depend on accelerations of the nodes 

closest to the support. The support node does not accelerate at all. This is also 

discussed in 3.5.6. 

 

5.2.1 Comparison with equivalent static load 

The equivalent static load is used in order to compare the magnitude and distribution 

of moment and shear force in Figure 5.6 and Figure 5.7. It is calculated for state II in 
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The moment envelop has been found for a linearly elastic beam and is shown in 

Figure 5.6. The envelop covers two oscillations, i.e. 50 ms. The envelop was the same 

if only the first oscillation was considered. The moment envelop is shown together 

with the corresponding moment distribution from the equivalent static load. The 

equivalent static load underestimates the moment obtained from the FE-analysis 

especially in the midpoint of the beam.  

 

Figure 5.6. Moment envelop compared to the moment from the static equivalent 

load. The static equivalent load underestimates the moment distribution 

from a more sophisticated Fe-analysis.  

 

The shear envelop is shown in Figure 5.7 together with the corresponding shear force 
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Figure 5.7. Shear force envelop from the FE-analysis compared to the equivalent 

static load. The shear force underestimated by using the equivalent 

static load. 

If the peak pressure is decreased to 1250 kPa and the duration is increased to 4.48 ms 

i.e. load case 3, the solutions agree much better as seen in Figure 5.8. Nevertheless, 

the equivalent static load still provides values somewhat on the unsafe side. 

 

Figure 5.8. The moment and shear envelops for a less impulsive load with peak 

pressure 1250 kPa and duration 4.48 ms. 
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The result shows that a large error is found for very high ratios of Pc/qeq and even for 

relatively small ratios it gives a significant error. The error is larger for shear forces, 

which can be underestimated with up to 150 %. This is very dangerous to use in 

design. The absence of damping in the model may influence the result considerably. 

This is further investigated in Section 5.2.2. 

 

Figure 5.9. Relative error vs. ratio between peak pressure and equivalent static load 

for a) moment and b) shear force, where load case 1 is marked with 

circles and load case 3 with squares. 

The equivalent static load takes no consideration to contribution from the load on the 

support reaction. This is done by for example FortV (2011). The support reaction is 

then overestimated according to Figure 5.10. It seems like the best agreement is found 

for a ratio between peak pressure and equivalent static load of around 5. 

 

Figure 5.10. The relative error for different ratios using FortV’s approach for the 

support reaction, where load case 1 is marked with circles and load 

case 3 with squares. 

 

5.2.2 Influence of damping 

If Rayleigh damping with 5% as described in Section 4.4, is assumed for the normal 

beam subjected to a high intense load the error is decreased considerably but a 

relatively large divergence still exists, Figure 5.11. Load case 1 is used and the Pc/qeq 

value is 5.4. This is reasonably a better explanation of a real elastic concrete structure. 

The shear force and moment is still very high close to the centre of the beam. This 

must be considered in design of an elastic structure. The errors, though, are now 

lower:  
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Figure 5.11. Envelops when 5% Rayleigh damping has been used. 

The damping does not affect the maximum deformation in the midpoint considerably, 

but the peaks in the support reaction and moment are reduced rather much, see Figure 

5.12. The early peak in the support reaction is not reduced, hence, it can be considered 

to be correct in the undamped analysis. 

 

 

Figure 5.12. The undamped and damped support reaction and displacement and 

moment in midpoint. 

The influence of damping and comparisons for different cross sections with and 

without damping are shown in Appendix H. 

The relative error is decreased considerably if damping is introduced as can be seen in 

Figure 5.13. The equivalent static load actually overestimates the moment and support 

reaction for very low ratios Pc/qeq. 

-1500

-1000

-500

0

500

1000

1500

0 1 2 3

S
h

e
a

r
 f

o
r
c
e
, V

[k
N

]

Coordinate, x [m]

0

100

200

300

400

500

600

700

0 1 2 3

M
o

m
e
n

t,
 M

[k
N

m
]

Coordinate, x [m]

-20

-10

0

10

20

0 10 20 30 40 50

D
is

p
la

c
e
m

e
n

t,
 u

s
[m

m
]

Time, t [ms]

-1500

-1000

-500

0

500

1000

1500

0 10 20 30 40 50

S
u

p
p

o
r
t 

r
e
a

c
ti

o
n

, 
V

s
[k

N
]

Time, t [ms]

-1500

-1000

-500

0

500

1000

1500

0 10 20 30 40 50

S
u

p
p

o
r
t 

r
e
a

c
ti

o
n

, 
V

s
[k

N
]

Time, t [ms]

-1000

-500

0

500

1000

0 10 20 30 40 50

M
id

p
o

in
t 

m
o

m
e
n

t,
 M

[k
N

m
]

Time, t [ms]



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:103 
110 

 

Figure 5.13. The relative error for damped elastic case. Load case 1 is marked with 

circles and load case 3 with squares. 

Fortifikationsverket’s approach will overestimate the support reaction even more 

since the support reaction is even lower for a damped case. 

 

5.3 Ideal plastic analysis 

The moment and shear distribution in the ideal plastic case has been studied. The ideal 

plastic beam has a maximum moment capacity of 227 kNm and this value is reached 

soon after load arrival in most sections of the beam since almost no elastic 

deformations take place, see Figure 5.14. The moment will then decrease from the 

edges until a concentrated plastic hinge is formed in the midpoint. This can be shown 

by the plastic strain in the beam Figure 5.15. The plastic strain starts closer to the 

edges and increases and becomes concentrated in the centre. 

 

Figure 5.14. The moment distribution for different times in the ideal plastic case. The 

adjacent number denotes the time when the specific distribution occurs. 
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Figure 5.15. Plastic strain in the ideal plastic beam. 

 

Once the maximum deformation is reached, the moment will alternate between 

positive and negative yield moment, see Figure 5.16. This is due to elastic oscillations 

with a very high stiffness, which should not happen in an ideal plastic material. 

Actually, the deformation oscillates with a high frequency and low amplitude when 

the maximum deformation is reached in the ideal plastic case. It is easier to 

understand in an elasto-plastic case where it is clear that the midpoint oscillates. The 

worst case will occur soon after load arrival and therefore the beam should be 

designed for the first response in both directions. 

 

Figure 5.16. Moment in midpoint in an ideal plastic beam over time. 

The shear force has the same behaviour to that in the linear elastic case, i.e. not 

similar to the static distribution. It starts as high values close to the supports which 

later decreases and stabilises on a level until the maximum displacement is reached. 
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The shear force is zero close to the midpoint in the beginning. Thereafter, it increases 

and has eventually a linear distribution between the two plateaus.   

 

Figure 5.17. Shear distribution for different times. The shear force is high close to the 

supports in the early phase of the response. 

 

5.3.1 Comparison with equivalent static load 

The equivalent static load in the plastic load case is calculated in equation (3-33) and 

is 

kN 606plQ  (5-7) 

The corresponding uniformly distributed line load can be written as 
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The section forces can then be obtained by 
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(5-10) 

The maximum moment in midpoint is well described by the equivalent static load. 

However, it does not take into account that almost the whole beam will have this 

moment at some time. The large moment close to the beam edges only occur in the 

initial phase as shown in Section 5.3. This will provide an adequate reinforcement 

amount but an unwanted reinforcement arrangement would be obtained if curtailment 

and anchorage lengths would be designed by considering the moment distribution 

from the equivalent static load.  
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Figure 5.18. The moment envelop compared to the eq. static load. The equivalent 

static load does not describe the high moments close to the supports. 

Similarly, the shear force is relatively well described by the equivalent static load. 

However, the shear force close to the support is considerably higher in the beginning 

close to the support. This is a direct consequence of the sudden moment changes that 

occur over a short beam length in the initial phase.  

 

Figure 5.19. Shear force envelop compared to the shear force from the equivalent 

static load. The shear force close to the supports is underestimated when 

it is based on the equivalent static load. 

The same relation can be found for a less intense load, load case 3. The divergence is 

smaller as can be seen in Figure 5.20 but is still not accurate. 
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Figure 5.20. The envelops compared to the internal forces generated from the 

equivalent static load for a less intense load, load case 3.  

 

5.4 Elasto-plastic analysis 

The shear and moment distribution in linear elastic and ideal plastic models may not 

be possible in reality. They are just simplifications in order to understand the more 

realistic elasto-plastic model. Ultimately, it is important to find the reaction forces in 

an elasto-plastic model. Since the moment can increase to infinity in an elastic model 

and peculiar moment distributions can be obtained from several modes, it cannot be 

seen as a good representation of a concrete structure. In a similar way the ideal plastic 

model does not deflect if it has not begun to yield. Therefore, the moment, and 

consequently the shear force, will be overestimated in the initial phase close to the 

supports since the gradient of the moment is larger than expected. 

Initially, the behaviour for is identical to the linear elastic case, see Figure 5.21 and 

Figure 5.22. The moment builds up from the edges and the moment in the midpoint is 

not increasing until after around 2 ms. Compared to the linear elastic case there is no 

difference until 2.5 ms when the moment has reached the maximum moment capacity. 

The shear force also follows the linear elastic model until yielding occurs in the 

structure. The shear force peak close to the centre in the linear elastic model is evened 

out because the moment does not increase beyond the yield moment. Therefore, the 

increase in moment is less drastic and the shear is lower. 

 

Figure 5.21. Moment distribution in the elasto-plastic model. 
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Figure 5.22. Shear force distribution in the elasto-plastic model. 

Yielding occurs away from centre after 1.5 ms as can be realised by the plastic strain 

in the beam, shown in Figure 5.23. There is no plastic strain before this time. The 

plastic strain becomes more concentrated in the centre and forms a plastic hinge. 

 

Figure 5.23. Plastic strain in the beam for different times. 

The maximum shear in the linear elastic model does not occur initially. It occurs at 

the maximum deformation; this will never occur in the elasto-plastic model since the 

structure starts to yield, which affects the change in moment considerably and 

consequently the shear force. Therefore, the shear force will be smaller than obtained 

using the linear elastic model. 
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5.4.1 Comparison with the equivalent static load 

In the maximum moment and shear force are compared to the distribution when using 

the equivalent static load. The moment is limited to 227 kNm as for the ideal plastic 

case. The shear force can initially be governed by the elastic behaviour and is 

therefore compared to the shear force resulting from both the elastic and plastic 

equivalent static load, see Sections 5.2.1 and 5.3.1 for values.  

The maximum moment along the beam is shown Figure 5.24. It is similar to the 

plastic distribution but will not be as high close to the supports. As a result, the 

moment can be better explained by the equivalent static load although it does not take 

into account that a large part of the beam reaches the yield stress at some point. As 

mentioned for the ideal plastic case, care has to be taken when anchorage and 

curtailment of reinforcement are designed.  

It can also be seen that the moment is higher than the maximum moment in some 

parts of the beam. This is impossible and depends on that the moment has been 

extracted from nodal moments. This is discussed in Section 3.5.6.2. 

 

Figure 5.24. Moment envelop compared to the equivalent static load for load case 1. 

The maximum positive shear force from the elastic static equivalent load, which is 

based on elastic state II stiffness, agrees much better with the shear force in the 

structure from the FE analysis than what the plastic equivalent static load does, see 

Figure 5.25. Nevertheless, it overlooks that the shear force can be higher closer to the 

centre. Further, the shear force is not the same in both directions. Early after load 

arrival large negative shear forces will occur close to the centre in the elastic phase, 

see Figure 5.22, when the moment is much less in the centre than close to the edges. 

The negative peak disappears and negative shear force does not occur until the beam 

starts to oscillate back. It is then better explained with the plastic equivalent static 

load.  
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Figure 5.25. Shear envelop and the two static loads for load case 1. 

The result is similar for a less intense load, load case 3. The difference is that the 

moment will be smaller close to the edges and is better predicted with the plastic 

equivalent static load, see Figure 5.26a. The shear force is close to the elastic 

equivalent static load in the centre and close to the plastic equivalent static load at the 

edges, Figure 5.26b. 

 

Figure 5.26. The moment and shear envelop for a less intense load, load case 3. 

 

5.5 Discussion of results 

The moment demand on an impulse loaded elastic beam is higher than what is 

predicted using the static equivalent load. The more intense the load is, the larger 

deviation is obtained. This may not be of any importance in a concrete structure, 

which will yield and redistribute moments. However, for timber and high class steel 

cross sections that do not possess any plastic behaviour, such an underestimation of 

the moment may cause failure.  

More studies need to be carried out using the steel and timber properties in order to 

investigate the actual response for those materials. For instance, timber is not a 

preferable material for very intense loads. It will break anyways since it has 

insufficient resistance. Therefore, only a load corresponding to load case 3 or an even 

less intense load will in reality be of interest for acting on the timber structure. The 

deviation is also much smaller for such cases. 
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If an elastic material is to be used in design, an up scaling factor could be introduced 

for moments and shear forces. More investigations should be carried out in this 

subject and since this thesis mainly investigates concrete structures this elastic effect 

will not be considered further. 

The shear force is not adequately described using the equivalent static load. Both the 

support reaction and the shear force close to the centre are underestimated. The 

support reaction is the largest shear force and is further investigated in Chapter 6. 

Damping effects have been neglected when performing the elastic analysis. Damping 

does not affect the displacement of the midpoint significantly. However, the moment 

and shear force demand is affected considerably. Damping exists in all real structures 

and even a 5 % damping ratio will decrease the deviation considerably. For timber 

structures it is possible to have a very large damping up to 20 %, Johansson (2012).  

The plastic and elasto-plastic analyses show that the distribution of shear forces and 

moments are not the same as that predicted by a static equivalent load. 

Fortifikationsverket (2011) and MSB (2011) demand that no curtailment of the steel 

reinforcement is done. Having seen the moment distribution in Sections 5.2.1, 5.3.1 

and 5.4.1, this is a very reasonable requirement. Moreover, anchorage of reinforce-

ment bars should be performed with care. Alternatively, existing structures with 

varying reinforcement arrangement could be analysed with a varying stiffness in order 

to see the effect of the moment redistributions. The observation that high shear forces 

occur close to the centre for all material models implies that the distance where shear 

force reinforcement is arranged should be extended towards the centre.  

The shear force demand is governed by the elastic behaviour soon after load arrival. 

However, the shear force in the ideal plastic material model is not reliable since it 

depends on the initial stiffness, which has been overestimated by the modelling.  The 

elasto-plastic model assumes an equivalent state II young’s modulus. Initially, though, 

the concrete is uncracked and a state I model should possibly be used instead. This is 

difficult to take into account in a simplified model. A brief discussion of this problem 

is given in Section 6.2. 

A shear crack in a statically loaded structure starts at an angle close to 45 degrees to 

the flexural reinforcement. As load redistribution occurs, the angle of the shear crack 

can be flatter. This flatter angle is used for static shear design. However, the small 

duration of the shear force that occurs in an impulsively loaded beam may mean that 

load redistribution may not be possible and consequently that shear cracks cannot 

have a small angle as used in static design. Moreover, the time for a crack to form 

should be investigated since the small duration mean that a whole crack may not have 

time to form. A more detailed analysis taking concrete cracking and reinforcement 

yielding into account could therefore be used to determine more accurate behaviour. 

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:103 
119 

6 Support reaction 

6.1 Definition of used methods 

The support reaction is of interest when analysing a structure with respect to direct 

shear and shear force design. As seen in Chapter 5, the support reaction is very high 

initially. It is therefore necessary to find the reaction at the support. The obtained 

support reactions from the FE analysis were compared to the to the method used by 

Biggs (1964), Fortifikationsverket (2011) and the equivalent load approach described 

in Sections 2.4.2.5 and 2.4.2.6 in order to see whether they can be used to estimate the 

actual shear force adequately.  

The three alternative, simplified methods are intended to be used in order to estimate 

the maximum value of the support reaction, Vd. However, it is possible to use all 

methods with a varying external load and internal resistance from the SDOF-model. 

Since Biggs’ (1964) and Fortifikationsverket’s (2011) methods are very similar for 

theoretical values of the transformation factors, see Section 2.4.2.5, they are here 

described with Fortifikationsverket’s approach. Fortifikationsverket’s (2011) 

approach is beneficial since it can use varying transformation factors studied in 

Chapter 5. The methods used in further analyses are  
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In later diagrams these are referred to as Max V, theoretical mf, time dependent mf 

and equivalent static load respectively. 

The internal resistance obtained from the SDOF-model where the energy is preserved 

will be used when the time dependent transformation factors are used, see Section 4.5. 

The constant transformation factors used are 

case elasticfor          0.504 and 0.64 mF    (6-5) 

case plasticfor          0.333 and 0.50 mF    (6-6) 

Ardila-Geraldo (2010) uses varying transformation factors and varying internal 

resistance within a tenth of the structure’s period in order to describe the support 

reaction. It is only a mathematical trick in order to describe the support reaction and 

the varying stiffness is not implemented into the SDOF model, see Figure 6.1. In other 

words, this means that the SDOF internal resistance is calculated and then initially 
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increased when the support reaction is considered. This method uses equation (6-3) 

with the internal resistance:  
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Figure 6.1. Definition of the internal resistance and initial increased stiffness 

according to Ardila-Geraldo (2010). 

In further analyses, this approach will be referred to as varying mf and stiffness. This 

will only be used for the elastic and the elasto-plastic material models since Ardila-

Geraldo (2010) only considered the elastic phase. Consequently, five different 

approaches are compared to the result from the FE-analysis. 

 

6.2 Elastic analysis 

The support reaction forces for a linear elastic reinforced concrete beam subjected to 

an impulse load were found using several approaches. The initial peak reaction can 

occur when the concrete is uncracked and has state I behaviour. However, it is here 

assumed that it is cracked and an equivalent young’s modulus corresponding to state 

II is used.  

The FE-analysis provides a rough curve, which oscillates up and down. The reason for 

this is likely because several modes and that no damping were considered. As seen in 

Section 5.2.2 damping has considerable influence on the peaks. The highly varying 

reaction curve can be smoothed out by plotting a mean value for 1000 points, i.e. 500 

points after the actual value and 500 before, see Figure 6.2. The time-step is 0.01 ms 

so this corresponds to an average over 10 ms. 
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Figure 6.2. The roughness of the Fe-curve can be relieved by using a mean value for 

every 10
th

 millisecond. 

In Figure 6.3 it can be seen that Fortifikationsverket’s maximum support reaction with 

theoretical transformation factors is greatly overestimated compared to the FE-

analysis. The reason for this deviation is that it combines the maximum values of the 

internal resistance and peak load, which in reality never overlap. Initially, when the 

load is active, the internal resistance is insignificant. At a later phase the support 

reaction is merely affected by the internal resistance.  

The equivalent load concept will give a maximum support reaction force that does not 

capture the peaks of the FE-analysis, see Figure 6.3. Also, the early peaks of the two 

simplified methods are overlooked by using the equivalent load. However, it lies 

above the mean value of the FE-analysis and Fortifikationsverket’s solution for later 

times. This means that it is slightly conservative when estimating the mean value of 

the support reaction. 
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Figure 6.3. Reactions for the linear elastic model calculated with the different 

methods for load case 1. 

Fortifikationsverket’s approach combined with time dependent internal resistance, 

from an SDOF solution, and external force seems to correspond to a mean value of 

the FE analysis. It can be seen in Figure 6.4 that the reaction force is approximately a 

mean value of the reaction force obtained in the FE-analysis. The initial difference 

can be due to that the methods initially assume an elastic deformation shape while the 

actual deformation is close to a rigid body motion.  
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Figure 6.4.  The reaction force using theoretical transformation factor method 

compared to the mean value of the support reaction from FE-analysis 

for every 5
th

 ms. 

Figure 6.5 shows a magnification of the first five milliseconds for the different 

methods in Figure 6.3. Varying values of the transformation factor and internal 

resistance have been implemented in Fortifikationsverket’s approach. It underrates the 

actual value significantly although it has a similar shape to the FE analysis.  

 

Figure 6.5. The early support reaction with the different methods for a load with 

peak pressure 5000 kPa and 1.12 ms duration.  
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Here, the stiffness is also varied according to equation (6-7) together with the 

transformation factors. This results in a good estimation of the maximum value. 

However, the maximum value does not occur at the same time. The maximum value 

in the FE analysis is obtained at half the load duration, while the proposed method’s 

maximum value occurs at half the structure’s period. After some time, the reaction 

force from these methods is the same as for the one with constant transformation 

factors.  

In order to investigate if this is just a coincidence, the same studies were performed 

for load case 3. It can be seen in Figure 6.6 that the support reaction is lower and that 

the peaks are reduced. The solution with theoretical transformation factors agree well 

with the mean value of the support reaction. The static equivalent load overestimated 

the support reaction and the maximum support reaction is greatly overestimated. 

 

Figure 6.6. The support reactions over time for load case 3 with peak pressure 

1250 kPa and 4.48 ms duration.    

Figure 6.7, shows the support reaction during the initial five milliseconds. It can be 

seen that using varying transformation factors will again underestimate the support 

reaction, see. The solution with a varying stiffness still provides a very good 

agreement, but does not occur at the correct time. It can also be seen that the 

theoretical transformation factors do not overestimate the support reaction as was the 

case for load case 1. 
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Figure 6.7. FortV with varying transformation factor and equivalent static load 

overrates the reaction for load case 3. 

The above analyses have used an equivalent state II model. The concrete may be 

uncracked initially, which mean that a state I model should be used. More detailed 

analyses must be carried out in order to determine which Young's modulus that should 

be used. This must take concrete cracking and reinforcement yielding into account. 

An attempt was made and is presented in Appendix I. However, a good convergence 

was never found for that model.  

A higher Young's modulus will increase the magnitude of the support reaction and 

shear forces, see Figure 6.8. It can also be seen that the small local peaks occur more 

frequently in state I because of the faster wave propagation. The time between the 

local peaks in both states is approximately the time it takes for the load to travel three 

metres, i.e. the beam length. The initial peak support reaction is considered to be true, 

but the magnitude of the later peaks is probably lower because of damping as seen in 

Section 5.2.2.  

 

Figure 6.8. The support reaction for a state I and II model respectively subjected to 

different load cases 0, 1, 2 and 3. The dotted line is the support reaction 

with the equivalent static load. 
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The magnitude increase happens because the support reaction depends on the internal 

resistance. When the internal resistance increases, the static equivalent load also 

increases. This is represented in Figure 6.8 with a black dotted line. In state II, the 

peak initial support reaction for both load case 0 and 1 cannot be described by the 

equivalent load. In contrast, the initial support reaction for load case 1 is taken into 

account in state I. It seems like the equivalent load can be used to estimate the initial 

peak conservatively if the ratio between the peak pressure and static equivalent load is 

small. A maximum value of the ratio between peak pressure and equivalent static 

load, for which the peak support reaction is lower than the equivalent static load, was 

obtained as 19. This was found by using other load cases until the equivalent static 

load did not describe the initial peak conservatively. The equivalent static load is 

consequently on the safe side if 

mpeak RF 19  (6-9) 

However, only some load situations have been considered and more investigations 

must be performed in order to determine this constant accurately.  

If the time dependent transformation factors are used together with a varying stiffness 

according to equation (6-7) it can be seen that the magnitude of the initial support 

reaction is reasonably well described for both the state I, Figure 6.9, and state II, 

Figure 6.10, models for the different load cases. It is only for load case 0 in the state II 

model that it gives an unsafe peak value. The time when it occurs is however not 

correct. The method describes the second peak. The agreement would probably be 

improved if the stiffness is calculated for every deformation shape and not just taken 

from the calibrated relationship in equation (6-7).   

 

Figure 6.9. The support reaction in state I for different load cases obtained from FE 

analysis (solid line) and SDOF model with time dependent 

transformation factors and stiffness (dotted line). 
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Figure 6.10. The support reaction in state II for different load cases obtained from 

FE analysis (solid line) and SDOF model with time dependent 

transformation factors and stiffness (dotted line). 

 

6.3 Ideal plastic analysis 

The same analyses as in section 6.2 are carried out for the ideal plastic case. As can be 

seen in Figure 6.11, the support reaction has a high peak in the first milliseconds and 

later oscillates between maximum and minimum plastic reaction force. The later 

oscillations start when the maximum deflection of the midpoint is reached and are 

believed to occur since the FE-analysis actually has not an ideal plastic response, just 

a very high Young’s Modulus. The response will consequently be similar to an elasto-

plastic response with very high Young's modulus but with much smaller 

displacements than in the case of elasto-plastic analysis. 

Similarly to the elastic case, the maximum value of the support reaction is 

overestimated with Fortifikationsverket’s approach. However, the mean value of the 

FE-analysis’ reaction force over time can be well estimated when the actual internal 

resistance is used in the method. It takes the initial peak into consideration before it 

corresponds to the peak values of the plastic support reactions. For higher peak 

pressures, load case 1, it gets slightly overestimated, as seen in Figure 6.11, while 

there is a better agreement for less intense loads, load case 3, see Figure 6.12. This 

could be because actual deformation shape is not the expected. 
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Figure 6.11. Reactions for the ideal plastic model calculated for load case 1. 

 

Figure 6.12. The reaction over time for a less intense load, load case 3. 
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the FE-model well but misses the first peak. This is because it does only consider 

contribution from half the internal resistance as discussed. The difference between the 
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Figure 6.13. Early reactions according to the different methods for load case 1.  

If the plastic analysis is performed with load case 3, it can be seen that the theoretical 

values of the transformation factors give a good agreement with the average of the FE 

analysis and will not overestimate the peak value in the early stage, see Figure 6.12 

and Figure 6.14. Also, the peak is very well approximated with the maximum value. 

This is a consequence of that the internal resistance is close to the maximum internal 

resistance at the same time as the peak load is present. 

 

Figure 6.14. Reactions in early stage of the analysis for load case 3. 

 

  

-1000

-500

0

500

1000

1500

2000

2500

0 1 2 3

R
e
a

c
ti

o
n

, 
V

[k
N

]

Time, t [ms]

Max V

Theoretical

FE

Time dependent

Eq. Static load

mF

mF

-500

0

500

1000

0 1 2 3

R
e
a

c
ti

o
n

, 
V

[k
N

]

Time, t [ms]

Max V

Time dependent

FE

Theoretical

Eq. Static load
mF

mF



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:103 
130 

6.4 Elasto-plastic 

The dynamic support reaction has been calculated similarly to the linear elastic and 

ideal plastic cases by using the proposed methods. The initial support reaction 

becomes high compared to the later support reaction in the oscillations, see 

Figure 6.15. This reaction will be overlooked or overestimated by the different 

approaches, as seen in Figure 6.16. 

The hand calculation of maximum support reaction overestimates the reaction force 

considerably. This is discussed for the other material idealisations and depends on that 

the maximum internal resistance does not occur at the same time as the peak load. 

The equivalent load gives a slightly conservative value of the late oscillations but does 

not capture the early peak. It agrees well with the peak values in the late phase.  

The theoretical transformation factor used for the elasto-plastic model is the plastic 

transformation factor mF = 0.667. This gives a good estimation of the reaction force 

when the structure oscillates but a phase shift occurs similarly to the displacement 

described in Section 4.1.3. In addition, it will give a conservative large support 

reaction initially. 

If the varying transformation factors are used in Fortifikationsverket’s approach with 

an internal resistance from the modified SDOF approach, this phase shift will not 

occur and the reaction force will be in good agreement in the late oscillations. 

However, the initial support reaction will be underestimated, i.e. the same response as 

to what has been observed for the linear elastic and the ideal plastic material models 

in Sections 6.2 and 6.3, respectively. 

 

Figure 6.15. Reactions for the elasto-plastic model calculated for load case 1. 

If a varying stiffness is also introduced, according to equation (6-7) a good estimation 

of the initial peak is obtained, see Figure 6.16. The peak support reaction will 

however not occur at the same time, which has also been observed in the linear elastic 

case. 
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Figure 6.16. The early reaction force with different methods for load case 1. 

The same observations are made for a less intense load, load case 3, see Figure 6.17. 

The maximum values overestimate the reaction. However, neither of the proposed 

methods captures the early peak. It is only if a varying stiffness according to equation 

(6-7) is introduced that the initial peak is covered as seen in Figure 6.18.  

 

Figure 6.17. Reactions for the elasto-plastic model calculated for load case 3. 
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Figure 6.18. Reactions in early stage of the analysis for the elasto-plastic model for 

load case 3. 

 

6.5 Discussion of results 

A large support reaction occurs initially in a structure subjected to a highly intensive 

impulse load. Since this reaction force occurs very early, the behaviour of the 

structure is elastic. The initial peak is higher than the later support reaction when the 

structure has a plastic behaviour.  

Several methods have been compared and the result suggests that the following could 

be concluded about the design approaches: 

The maximum support reaction is greatly overestimated with the method that does not 

vary with time since the maximum external force does not occur at the same time as 

the maximum internal resistance. 

The initial support reaction cannot be adequately predicted using by the static 

equivalent load only. The static equivalent load is only based on the maximum 

internal resistance, which leads to an underestimation of the initial peak. In addition, 

the support reaction for the later oscillations is overestimated with 25%. However, it 

can be used for conservative estimations for the later phase if knowledge about the 

early peak support reaction exists. 

The support reaction for the late phase is dependent on the transformation factors 

according to Fortifikationsverket’s approach. However, the initial support reaction is 

overestimated when using theoretical transformation factors. This could also be used 

conservatively in design. 

Implementation of varying transformation factors provides initial support reactions on 

the unsafe side. The stiffness is higher initially, because of the different displacement 

shape and the internal resistance could be increased according to Ardila-Geraldo 

(2010) soon after load arrival. This estimates the peak very well but not the time when 

it happens.  A more general stiffness could be taken out for every time step to get a 

better agreement. However, the maximum value is of main importance and not the 
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time of occurrence. This approach is the most accurate approach to determine the 

early peak support reaction, but also the most complex. The theoretical transformation 

factors could be used in a conservative design. This would be preferable since the 

method is less time consuming. 

In a real reinforced concrete beam, the section could be uncracked and a state I model 

should be used. This would introduce larger initial forces in the structure. However, 

the suggested design approach with using a varying stiffness and time-dependent 

transformation factors can capture this response as well. More research needs to be 

done to see which state model that describes the initial peak the best. 
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7 Direct shear 

7.1 SDOF model 

The simplified SDOF-approach for direct shear, described in Section 2.5.3, has been 

used for the beam described in Chapter 3 in order to examine the risk of failure in 

direct shear.  

)()( tVRm s   (7-1) 

where m is the beam’s mass,  is the shear slip, R() is the direct shear resistance and 

Vs(t) is the support reaction. Here, m represents the full mass since the initial 

transformation factors are almost 1.0 due to the initial near rigid body motion. 

The direct shear resistance function was calculated according to Table 2.6 and is 

shown in Figure 7.1. The ultimate slip, max, becomes very large, due to much 

bending reinforcement and large diameter bars. Since the resistance function is purely 

empirical, this value should probably be handled with great care. The steel used when 

the method was proposed did in general have more plastic deformation than today, 

Johansson (2012). The large ultimate slip gives a high direct shear capacity since it 

consumes much energy. 

 

Figure 7.1. Direct shear resistance function. a) The entire resistance curve, b) 

magnification of the initial resistance. 

 

7.2 Failure criteria 

When examining the risk of dynamic direct shear failure, 3 = 0.6 mm is used as a 

failure criterion with a tri-linear resistance function. This is the same criterion that 

Krauthammer et al. (1993) has used in previous work. Another alternative has been 

used by Low and How (2002), who have simplified it further to just a bilinear 

relationship with the same area under the graph in order to investigate the failure 

mode, see Figure 7.2. This makes the potential incorrectness with max unimportant. 

Using max as failure criterion makes the direct shear capacity unreasonably high. 
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Figure 7.2.  Simplified bilinear relation used by Low and How (2002) compared with 

the original relation used by Krauthammer et al. (1993). The areas 

under the graphs are equal. 

Since the flexural and direct shear response occurs at different times, they are 

uncoupled and the support reaction could be calculated with the SDOF model for 

flexure using FortV’s method. As seen in Chapter 6 this provides a conservative 

estimate of the reaction force but is here used as an estimate. The general appearance 

of the support reaction is shown in Figure 7.3. The first peak is dependent on how 

impulsive the load is. 

 

Figure 7.3. General appearance of the support reaction for elasto-plastic response. 
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7.3 Iso-damage curves 

Iso-damage curves were constructed for flexure and direct shear failures by 

investigating at which pressure and impulse intensity the failure criteria were reached. 

The direct shear failure was assumed to happen early before any significant bending 

effect happens. 

 

Figure 7.4. Iso-damage curves for bending and direct shear. 

In Figure 7.4, it can be seen that for any combination of peak pressure and impulse 

intensity, the beam will fail in bending and hence the direct shear failure would not 

need to be considered for this beam. If direct shear would occur, the beam would have 

failed in bending anyway a couple of milliseconds later.  

In previous experiments and comparisons by Chee (2008), it is shown that direct shear 

failure occurs if the load is very impulsive and of high magnitude and that flexural 

failure happens when the load has lower magnitude with longer duration, see Figure 

7.5. The experiment indicated with a triangle would fail in both modes but failed 

firstly in direct shear.  

The requirement for bending failure used by Chee (2008) is much greater than what is 

used in this thesis. The slab element used is 1.2 x 4.8 x 0.15 m and has an ultimate 

displacement of 14 inch, i.e. 355 mm. This had a reinforcement percentage of 0.5 %. 

It was not possible to find which steel class that was used. The concrete had cylinder 

compression strength 52 MPa i.e. higher than in this example. The authors of this 

thesis did not succeed to recreate the iso-damage curves in Figure 7.5. This was due to 

that a slab flexural resistance curve has been used, which is not treated in this thesis. 

Also, some parameters may have been misinterpreted. 
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Figure 7.5. Iso-damage curves for one of the experiments carried out by Kieger and 

Getchell (1982), from Chee (2008) 

The failure criterion used in Eurocode 2, CEN (2004), can be an underestimation of 

the allowed bending deformation therefore the beam was given a higher plastic 

rotational capacity in order to examine the effect of this. 

mm452 ,  dplpl uu  (7-4) 

and the total deformation 

mm50
2

,


elep

plep

u
uu  (7-5) 

Using this modified failure criterion, the moment failure is still the governing 

parameter for all loads but the failure curves are closer to each other. It could be seen 

that a three times as high rotational capacity would give a risk of direct shear failure 

and iso-damage curves more similar to Figure 7.5. 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:103 
138 

 

Figure 7.6. Iso-damage curves when using a larger rotational capacity for bending 

failure. 

In the reliability analyses performed by Low and How (2002), it was found that a 

stiffer and shorter beam would be more susceptible to fail in direct shear. Therefore, 

the simplified SDOF system for direct shear were also implemented for shorter and 

deeper beams, but the flexible mode of failure still turned out to be the most 

dangerous, i.e. the iso-damage curves were schematically the same as in Figure 7.4. 

The influence of the concrete strength was also analysed. This study was made with 

the same beam but with a lower concrete strength. The results show that the difference 

between bending and direct shear capacity decreased with decreased concrete 

strength, but that the beam would still fail in bending for all load cases. The influence 

of using the state I stiffness when calculating the reaction force was also investigated. 

A direct shear failure would still only occur if the beam would fail in bending. 

 

7.4 Discussion of results 

In this chapter iso-damage curves for direct shear and bending failure were created. 

Direct shear failure will not be the governing failure criterion in these analyses. If it 

would occur, the structure would have failed in bending later anyway.  

The calculations carried out in this thesis show that it is not necessary to consider the 

direct shear failure phenomenon the simply supported beam studied here. This can 
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conservative, which leads to a lower capacity in bending. For instance, the allowed 

deformation in bending used by Chee (2008) is 350 mm for a 4.8 m slab compared to 

Eurocode, which gives a value of 22 mm for a 3 m slab. These two sections have 

approximately the same reinforcement ratio but the steel class used by Chee (2008) 

could not be found. Evidently, more parameters govern the plastic rotation capacity 

but the principle difference can be seen. 

The constructed iso-damage curves for direct shear failure may therefore be correctly 

described with the used approach. However, more investigations are needed to 

determine whether this is true. The direct shear resistance function is empirical and it 
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is important to investigate if it is up to date. In Europe, new types of reinforcement 

steel are used today compared to those used in for example the 1980’s, which may not 

have the same properties. This is probably the reason why the ultimate failure slip is 

very high. This is however no problem if the shear slip corresponding to 0.6 mm is 

seen as the failure criterion. Since the definitions of the different regions are fixed 

values, these should be further investigated for smaller or larger cross sections. 

Intuitionally, empirical models should be handled with care and this is also what is 

recommended here.   

More studies of how the boundary conditions affect the reaction force needs to be 

carried out. It is possible that a clamped beam may have another response than for a 

simply supported beam. Most of the reported direct shear failures have occurred in 

slabs. This may also be a subject for further studies. 

Regarding the actual design, it is important to realise that the shear reinforcement 

should not be arranged vertically when strengthening a structure against direct shear 

failure. This would not contribute to the resistance of direct shear since the direct 

shear crack propagates almost vertically. The reinforcement should therefore be 

placed with an angle to the shear plane. In Section 5.5 the arrangement of the bending 

reinforcement is discussed. It is there recommended that no curtailment is performed. 

Since the moment close to the edges is very small when the direct shear takes place, 

this reinforcement can contribute to the direct shear resistance. If the shear 

reinforcement is placed with an angle to the longitudinal axis it could contribute to the 

normal shear capacity as well as the direct shear capacity of the beam. 
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8 Final conclusions and recommendations  

8.1 Conclusions 

The initial deformation shape for a beam subjected to a uniformly distributed impulse 

load differs considerably to the expected shape when statically loaded. This means 

that the current theoretical values of transformation factors for the plastic and elasto-

plastic material response poorly describe the early deformation. However, later on 

there is a rather good agreement with the theoretical transformation factors. 

Time dependent transformation factors can be obtained from FE analyses and 

implemented in the SDOF system. This will cause an energy loss in the system and 

consequently too small displacements. Therefore, a method for preserving energy in 

the system, while varying the transformation factors, is introduced. This makes the 

displacement agreeing well with the FE analyses for all material models studied.  

Even a simplified relationship for the time dependent transformation factors can be 

used if the preserve energy scheme is used in the SDOF model with elasto-plastic 

material model. This relationship uses the transformation factors for elastic and plastic 

theoretical deformation shape when the response is elastic and plastic, respectively. 

The moment for a beam with elastic material response will be underestimated when 

using the equivalent static load. The more intense the load is the larger deviation. 

However, damping decreases the deviation considerably. Similarly, the shear force is 

not described adequately with the equivalent static load. Both the support reaction and 

the shear force close to the centre are underestimated. 

Distribution of moment and shear force will not be as expected for a static load. This 

means that care should be taken when the reinforcement is arranged in a concrete 

member. A recommendation is to not make any curtailment and that shear 

reinforcement, if needed, should be extended towards the centre.  

The initial reaction force is governed by elastic behaviour and will be of great 

magnitude. Several methods for determining the support reaction have been 

investigated: 

 Using the maximum value of Biggs’ and FortV’s approach will result in a 

considerable overestimation of the reaction. 

 Determining the reaction with the static equivalent load leads to an 

underestimation for the initial reaction. For the later phase, though, the 

reaction is overestimated with 25 %. 

 Using time dependent pressure and internal resistance together with the 

theoretical transformation factors in FortV’s approach will cause an 

overestimation of the initial reaction. This approach will represent the later 

phase rather well.  

 Implementation of varying transformation factors provides initial support 

reactions on the unsafe side. The internal resistance could be increased 

according to Ardila-Geraldo soon after load arrival. This estimates the peak 

very well but not the time when it occurs.  
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The evaluated simplified SDOF model for direct shear failure shows that this failure 

criterion will not be governing for the case presented in this thesis. The examined 

examples in this report will always also fail in bending later if it fails in direct shear. 

This may be a consequence of that the model is empirical or that input data have been 

misinterpreted. This should be handled with great care. This can also be due to a very 

strict value for the plastic rotation capacity used for bending, which has been seen to 

be less strict in other studies. 

Using an equivalent Young’s modulus in ADINA will have a significant impact on 

the results, but as long as the corresponding change in velocity is less than 3 times the 

initial value it is seen as a good approximation. For higher changes the user should be 

cautious. 
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8.2 Further studies 

The method using energy preservation in the SDOF analysis works well. Some further 

work investigating how high accuracy that is needed for the transformations factors 

can be done. It is interesting to investigate if the relationship can be further simplified 

or if values for more time increments should be used. It would be preferable to 

determine a simplified relationship that can be used to calculate both the displacement 

and reaction for different load cases and boundary conditions. 

It is not clear how the initial peak value of the support reaction is supposed to be 

treated and it can differ a lot between different design codes. This is a subject that 

needs further study, although some investigations are covered in this report. A 

suggestion is to find a reaction force as a function of the properties of the impulse 

load and the transformation factors, which represent a good estimate of the peak value 

and time of occurrence. 

Investigations of to what extent the equivalent static load can be used for design is 

needed. In this report it is shown that it is not always on the safe side to base the 

design on an equivalent static load. It would be of interest to study the influence of 

varying stiffness i.e. how the moment and shear distribution would be affected by 

curtailment of the reinforcement. Moreover, the response when using other material 

properties such as steel and timber should be explored. Some suggestions of how to 

treat this in design is preferable. If an elastic material is going to be used in design, an 

up-scaling factor could be introduced for moments and shear forces. This factor could 

take damping into account. More investigations should be carried out in this subject. 

This thesis presents how the direct shear problem is treated in different design codes 

today and also tried to implement this into a simplified SDOF model. However, the 

knowledge of the direct shear failure phenomenon is still vague, and there is need of 

further study. A suggestion is to study the importance of direct shear design and how 

this should be treated. Also study when the risk of direct shear failure occurs and how 

a so called direct shear crack propagates through the member. This is not treated well 

in design today and further study of this crack propagation and how it should be 

designed for should be investigated. 

The Young's modulus affects the wave propagation through the beam. It is necessary 

to investigate which Young's modulus that should be used in a FE analysis with a 

simplified bi-linear material behaviour in order to describe cracking and 

reinforcement yielding and how this will affect the deformation shape. 
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APPENDIX A The central difference method 

The central difference method is an explicit method for approximating the solution for 

a second order differential equation such as the equation of motion. The deformation 

at time t+Δt is approximated by considering the equation of motion at time t. 

)(tFkuucum ttt    (A-1) 

where m is the mass, c is the damping, k is the stiffness, F(t) is the external force 

acting on the structure at time t and tu , tu  and tu  is the displacement, velocity and 

acceleration respectively. 

By using the central difference approximations as shown in Figure A.1, the 

acceleration at time t can be written as: 
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The velocity at time t can correspondingly be approximated as: 
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Figure A.1.   The central difference scheme. The method uses ut-t and ut in order to      

 solve ut+t 

Following expression is obtained if equation (A-2) and (A-3) are inserted into the 

equation of motion (A-1): 
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where 

ttt ukR   (A-5) 

The above equation can be solved if the deformation at time t and for the previous 

time t-Δt is known. This method needs a start value of the displacement which 

corresponds to the time -t. This start value can be calculated as 

0
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Hence, the deformation at time t+Δt can be found if the deformation at time t is 

known. This can be a problem when dealing with a non-linear response while 

unloading and reloading, because the equation (A-4) is derived with the assumption of 

linear elastic response. It is relatively easy to apply this function with a non-linear 

response by calculating a corresponding internal resistance force for the actual time t 

as a function of the displacement at time t, the stiffness k and the residual deformation 

ures. In Figure A.2 below this is illustrated how this is solved for an elasto-plastic 

material model. 

where 

k

R
tuu m

res  )(max

 

(A-7) 

 

    resuiukiR   (A-8) 

Note that umax(t) can change with time because at the time step i the absolute 

maximum value may not have occurred yet, it is the maximum value so far. 
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R(i) 

ures 
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Figure A.2.  Illustration of how the resistance is calculated for an elasto-plastic 

 material model when using the Central Difference Method. 

It can be seen that if u(i) is the actual maximum umax(t) then the resistance Rm is 

obtained, which is the expected case. 
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APPENDIX B Derivation of expressions for 

maximum shear 

B.1 Fortifikationsverket 

In this appendix the expressions used in the Swedish design approach, FortV (2011), 

is presented. These expressions have been derived by Svedbjörk (2010). 

 

 

x V(x) 

M(x) P(x,t) 

F1 m, EI 

 

Figure B.1.   A cut of a simply supported beam showing load, reaction force and 

 section forces. 
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Because the acceleration has the same shape as the deformations the definition of the 

transformation factor in equation (B-4) can be used. By considering this  

equation (B-2) can be rewritten with help of equation (B-4) as 
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The right hand side expression in equation (B-1) is reduced to 
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which combined with equation (B-3) results in 
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Next, the free body of a single degree of freedom system in the centre point of the 

beam is considered 
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Figure B.2.   A free body diagram of a single degree of freedom system. 
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Horizontal force equilibrium gives 
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which can be rewritten as 
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B.2  Position of resultant in Biggs’ max reaction 

calculation expression 

When calculating the dynamic reaction the expressions derived by Biggs (1964) are 

commonly used. In this appendix it is shown how the expression for the lever arm of 

the inertia force is derived for a simply supported beam. 

Make cut and take moment equilibrium to get an expression for the moment along the 

beam. 

 

 

x V(x) 

M(x) P 

V1 m, EI 

 

Figure B.3.   A cut of a simply supported beam showing load, reaction force and 

 section forces. 
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Bernoulli beam equation gives us the definition of the moment as: 

 xM
dx

wd
EI 

2

2

 (B-12)  

Integrating over time results in: 
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A second integration is performed in order to obtain an expression for the 

displacement: 
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It is known that the displacement at the supports is zero i.e.  
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The integration constants can then be determined as: 
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By inserting (B-11) into (B-9), the expression for the deflection can be written as: 
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In order to obtain an expression for the deflection shape the expression for the 

deflection is divided with the maximum deflection at the midpoint which is: 
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and this result in the expression for the deflections shape: 
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The lever arm used in Biggs (1964) is calculated as the area times the lever arm for 

each small element divided with total area which can be stated as 
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Figure B.4.   The assumed distribution of the inertia force I and the 

 corresponding lever arm for a simply supported beam. 

 

Figure B.4 can later on be used to set up equilibrium and obtain the expression for the 

dynamic reaction. This is shown in section 2.4.2.5.
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APPENDIX C Derivation of shear span 

In this appendix the expressions used in the Swedish design approach, FortV (2011), 

is presented. The derivation of the shear span is for the early response where a direct 

shear failure can occur. A cut is made in the midpoint of the beam, see Figure C.1. 

Because of the initial rigid body response the moment is assumed to be zero in the 

midpoint and maximum close to the supports, see Figure C.2. Therefore the shear 

force distribution is obtained as illustrated in Figure C.3. 

 
 

Figure C.1.   A simply supported beam with a cut in the midpoint. 

Moment, due to rigid body motion in the early stage there will be zero moment in the 

middle of the beam. The moment will occur close to the supports where a 

concentrated curvature is obtained. 
 

 

 

Figure C.2.    Moment distribution in the early stage of a beam subjected to an 

 impulse load. Due to the rigid body response the moment is zero  in  

 the midpoint. 

Shear force 

 

 

Vs 

xm 

Vd 

a  

Figure C.3.    The shear force distribution in the early stage of a beam subjected to 

an impulse load. This shear force distribution corresponds to the 

moment  distribution in Figure C.2. 

Vd is the design shear force and should be determined at a distance a from the 

support. 

The resistance function for shear force g(x), the ratio between the design shear force 

Vd and the shear force capacity VRd, can be written as 

Rd

d

V

V
xg )(  (C-1) 

The shear force at the distance x from the support can be approximated as 











m

sd
x

x
VV 1  (C-2) 
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The expression in equation (C-2) assumes a linear variation of the shear force. This is 

not the case when the beam is subjected to an intense impulse load. So this 

approximation is not valid in this case. 

The shear resistance can be assumed as 

dx

k
xVRd

/
)(   (C-3) 

where k is just a constant not of importance and is not shown in the derivation. 

Inserting (C-2) and (C-3) into (C-1) gives 

x
x

x

kd

V
xg

m

s









 1)(  (C-4) 

The maximum value of the resistance function is obtained when  

2

mx
x   (C-5) 

Therefore, the shear force capacity should be controlled at a distance of half the 

distance between zero-shear force points. 

2

mx
a   (C-6) 

In order to find where the shear force is zero, xm, inertia forces close to the supports 

must be considered. This is done by assuming acceleration in the zero-shear force 

point equal to the rigid body motion acceleration and let it decrease linearly until zero 

at the supports, as shown in Figure C.4.   

 

xm 

mum   

 

Mm 

P 

 

Figure C.4.   A cut of the beam at the distance xm from the support. 

For a rigid body motion no resistance will impede the acceleration and the max value 

of the inertia force is 

Pum   (C-7) 

Moment equilibrium around the support is established 

0
3

2

22

2

 m
mmm M

xPxPx
 (C-8) 

The maximum moment Mm can be expressed as the ultimate moment resistance 
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8

2Lq
M

eq

m   (C-9) 

By using equation (D-9) and (D-8) 

P

q

L

x eqm






4

3
 (C-10) 

If the inertia forces close to the support are neglected the length xm will increase and 

the beam must be examined at a greater distance from the support. This corresponds 

to setting the term 
3

2

2
mm xPx

  in equation (C-8) to zero and equation (C-11) will be 

obtained. This is used in FortV (2010) as design value. There is also an additional 

term that provides safety because a is not zero for very high pressures. The safe side 

estimation of xm can be obtained from 

0
82

22


LqPx eqm  (C-11) 

And is 

P

q

L

x eqm






4

1
 (C-12) 

 

A term 0.05 is added to this distance to provide safe side solutions 

P

q

L

x eqm 5.005.0   (C-13) 

Finally, the shear span can be calculated from equation (D-6) as 

P

q
a

eq
25.0025.0   (C-14) 

The same method can be used to show how the shear span is calculated for a beam 

with fixed supports. 

P

q
a

eq
7.002.0   (C-15) 
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APPENDIX D Energy preservation while varying 

transformation factors 

A consequence of varying the transformation factors, and thereby the mass, is that the 

kinetic energy will drop. Since energy cannot disappear the kinetic energy is 

preserved in the SDOF-model by using the following calculation scheme. 

The procedure follows the central difference method described in Appendix A until 

the mass changes. When it does, the previous mass is used to obtain the deformation 

that should have been if the mass had been constant i.e. if mass changes at time t: 



















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

















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 tt

tttt
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t

m

t

um
RF

t

c

t

m
u

2

2

2 2

1

2

1

1

2

1  (D-1) 

The mean velocity between time t and t+t can be found as 

t

uu
u ttt

t



   (D-2) 

The kinetic energy is now 

2

2

,
tt

tk

um
W


  (D-3) 

This is a slightly larger or smaller value than what it should be because of the change 

of mass in the system. Therefore the velocity is altered so that the same kinetic energy 

is maintained: 

tm

tm

t

t

t
tt u

m

m
uu

,

1,1'


     (D-4) 

This velocity can be used to calculate the displacement at time t+t as 

tttt utuu '
  (D-5) 

 

 

ut+t 

ut 

ut-t 

tu  

tu  

u’t+t 

The deformation 

obtained while 

preserving energy 

The deformation 

without energy 

preservation 

t 

u 

t 

u 

 

Figure D.1. Calculation scheme for preserving the energy. A new velocity tu   at time 

t  is calculated to preserve the kinetic energy and is then used to find the 

deformation u’t+t  at time t+t. 
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APPENDIX E Energy balance for other load cases 

E.1 Introduction 

While varying transformation factors in the SDOF system a sudden loss of energy 

occurs which is due to the change in mass, i.e. change in kinetic energy. Due to this 

problem a method to preserve the energy is introduced. The difference between 

energy levels when not preserving energy, when preserving energy and the energy 

obtained in the FE analysis is presented in the graphs below for different load cases 

and beams. Where load case 0 have a peak pressure Ppeak = 10 Mpa and load duration 

t = 0.56 ms, load case 1 have a peak pressure Ppeak = 5 Mpa and load duration 

t = 1.12 ms and load case 3 have a peak pressure Ppeak = 1.25 Mpa and load duration 

t = 4.48 ms. 

They are presented for two different beams; a beam with the length L = 3 m with the 

width b = 1 m and the depth h = 0.4 m and a beam with the length L = 5 m and with 

the same cross-section. 

E.2 Beam L=3 m 

E.2.1 Elastic load case 0 

SDOF without energy preservation 
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SDOF with energy preservation 

 

FE analysis 
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E.2.2 Elastic load case 3 

SDOF without energy preservation 

 

SDOF with energy preservation 
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FE analysis 

 

E.2.3 Plastic load case 3 

SDOF without energy preservation 
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SDOF with energy preservation 

 

FE analysis 
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E.2.4 Elasto-plastic load case 3 

SDOF without energy preservation 

 

SDOF with energy preservation 
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FE analysis 
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E.3 Beam L=5 m 

E.3.1 Elastic load case 1 

SDOF without energy preservation 

 

SDOF with energy preservation 
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FE analysis 

 

E.3.2 Plastic load case 1 

SDOF without energy preservation 
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SDOF with energy preservation 

 

FE analysis 
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E.3.3 Elasto-plastic load case 1 

SDOF without energy preservation 

 

SDOF with energy preservation 
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FE analysis 
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APPENDIX F Transformation factors for 

different load cases and dimensions 

F.1 Introduction 

Here values of the transformations factors m, f and mf for load case 1, 2 and 3 are 

presented. Where load case 1 have a peak pressure Ppeak = 5 Mpa and load duration 

t = 1.12 ms, load case 2 have a peak pressure Ppeak = 2.5 Mpa and load duration 

t = 2.24 ms and load case 3 have a peak pressure Ppeak = 1.25 Mpa and load duration 

t = 4.48 ms. 

They are presented for two different beams; a beam with the length L = 3 m with the 

width b = 1 m and the depth h = 0.4 m and a beam with the length L = 5 m and with 

the same cross-section. 

F.2 Beam L=3 m 

F.2.1 Load case 1 
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Elasto-plastic 
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F.2.2 Load case 2 
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Elasto-plastic 
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F.2.3 Load case 3 
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F.3 Beam L=5 m 

F.3.1 Load case 1 

Elastic 
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APPENDIX G Deformations and moment and 

shear distributions over time 

The deformation shape and the moment and shear distributions are described in 

Chapter 4, 5 and 6. This appendix gives a more comprehensive picture of how the 

deformation changes with time. The corresponding moment and shear distributions 

are shown together with the deformation shape for simply supported beams assuming 

linear elastic, ideal plastic and elasto-plastic response. The load case that has been 

used here is load case 1, which has a peak pressure of 5000 kPa with a time duration 

of 1.12 ms. The intention here is to show the variation and this is the same for all the 

load cases although it is more extreme for highly intense loads.  

Firstly the variation in time of displacement and moment in midpoint and the support 

reaction is shown. Further, the normalised deformation shape and the moment and 

shear distribution are shown for different times. The time interval is concentrated in 

the early phase since this deviates most from the expected deformations. The results 

are only shown for the first oscillation. 

G.1  Elastic 

 

t=0.1 ms 

 
t=0.2 ms 
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t=0.3 ms 
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t=0.8 ms 
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t=2.5 ms 
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G.2  Ideal plastic 

 

-200

0

200

400

600

800

0 1 2 3

M
o

m
e
n

t,
 M

[k
N

m
]

Coordinate, x [m]

-1500

-1000

-500

0

500

1000

1500

0 1 2 3

S
h

e
a

r
 f

o
r
c
e
, V

[k
N

]

Coordinate, x [m]

0

0.2

0.4

0.6

0.8

1

0 1 2 3

D
e
fo

r
m

a
ti

o
n

 s
h

a
p

e

Coordinate, x [m]

-200

0

200

400

600

800

0 1 2 3

M
o

m
e
n

t,
 M

[k
N

m
]

Coordinate, x [m]

-1500

-1000

-500

0

500

1000

1500

0 1 2 3

S
h

e
a

r
 f

o
r
c
e
, V

[k
N

]

Coordinate, x [m]

0

0.2

0.4

0.6

0.8

1

0 1 2 3

D
e
fo

r
m

a
ti

o
n

 s
h

a
p

e

Coordinate, x [m]

0

200

400

600

0 1 2 3

M
o

m
e
n

t,
 M

[k
N

m
]

Coordinate, x [m]

-1000

-500

0

500

1000

0 1 2 3

S
h

e
a

r
 f

o
r
c
e
, V

[k
N

]

Coordinate, x [m]

0

0.2

0.4

0.6

0.8

1

0 1 2 3

D
e
fo

r
m

a
ti

o
n

 s
h

a
p

e

Coordinate, x [m]

-200

0

200

400

600

0 1 2 3

M
o

m
e
n

t,
 M

[k
N

m
]

Coordinate, x [m]

-1500

-1000

-500

0

500

1000

1500

0 1 2 3

S
h

e
a

r
 f

o
r
c
e
, V

[k
N

]

Coordinate, x [m]

0

0.2

0.4

0.6

0.8

1

0 1 2 3

D
e
fo

r
m

a
ti

o
n

 s
h

a
p

e

Coordinate, x [m]

0

10

20

30

0 5 10 15 20

M
id

p
o

in
t 

d
is

p
la

c
m

e
n

t,
u

s
[m

m
]

Time, t [ms]

-2000

-1500

-1000

-500

0

500

1000

1500

2000

0 5 10 15 20

S
u

p
p

o
r
t 

r
e
a

c
ti

o
n

, 
V

s
[k

N
]

Time, t [ms]

-1000

-500

0

500

1000

0 5 10 15 20

M
id

p
o

in
t 

m
o

m
e
n

t,
 M

f
[k

N
m

]

Time, t [ms]



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:103 
G7 

t=0.1 ms 
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t=9 ms 

 
t=10 ms 

 
t=11 ms 

 
t=12 ms 

 
t=13 ms 

 

-200

0

200

400

0 1 2 3

M
o

m
e
n

t,
 M

[k
N

m
]

Coordinate, x [m]

-500

0

500

0 1 2 3

S
h

e
a

r
 f

o
r
c
e
, V

[k
N

]

Coordinate, x [m]

0

0.2

0.4

0.6

0.8

1

0 1 2 3

D
e
fo

r
m

a
ti

o
n

 s
h

a
p

e

Coordinate, x [m]

-200

0

200

400

0 1 2 3

M
o

m
e
n

t,
 M

[k
N

m
]

Coordinate, x [m]

-500

0

500

0 1 2 3

S
h

e
a

r
 f

o
r
c
e
, V

[k
N

]

Coordinate, x [m]

0

0.2

0.4

0.6

0.8

1

0 1 2 3

D
e
fo

r
m

a
ti

o
n

 s
h

a
p

e

Coordinate, x [m]

-200

0

200

400

0 1 2 3

M
o

m
e
n

t,
 M

[k
N

m
]

Coordinate, x [m]

-500

0

500

0 1 2 3

S
h

e
a

r
 f

o
r
c
e
, V

[k
N

]

Coordinate, x [m]

0

0.2

0.4

0.6

0.8

1

0 1 2 3

D
e
fo

r
m

a
ti

o
n

 s
h

a
p

e

Coordinate, x [m]

-200

0

200

400

0 1 2 3

M
o

m
e
n

t,
 M

[k
N

m
]

Coordinate, x [m]

-500

0

500

0 1 2 3

S
h

e
a

r
 f

o
r
c
e
, V

[k
N

]

Coordinate, x [m]

0

0.2

0.4

0.6

0.8

1

0 1 2 3

D
e
fo

r
m

a
ti

o
n

 s
h

a
p

e

Coordinate, x [m]

-200

0

200

400

0 1 2 3

M
o

m
e
n

t,
 M

[k
N

m
]

Coordinate, x [m]

-500

0

500

0 1 2 3

S
h

e
a

r
 f

o
r
c
e
, V

[k
N

]

Coordinate, x [m]

0

0.2

0.4

0.6

0.8

1

0 1 2 3

D
e
fo

r
m

a
ti

o
n

 s
h

a
p

e

Coordinate, x [m]



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2012:103 
G18 

t=14 ms 
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APPENDIX H INFLUENCE OF DAMPING 

In the elastic case, it is seen that the moment and shear demand is underestimated 

when using an equivalent static load. However, the analyses in Section 5.2 do not 

consider damping and it is shown that this has a significant impact on the result. This 

Appendix will firstly show the moment and shear envelops for the undamped case 

Section H.1, and then for damped case, Section H.2. Some basic theory of how the 

damping is introduced is also presented in Section H.2. 

Three different cross-sections with elastic response have been used. The height is 

varied while the amount of reinforcement is kept constant. The level of reinforcement 

is also kept constant, see Figure H.1. The investigation is performed with the load 

case 1 and 3, described in Section 3.2Error! Reference source not found.. 

  

 

 As 
h 

Pc 

ta 1.0 m 

Time, t 

Pressure, P 
Reinforcement amount, .const

hb

As 


  

c 

 

Figure H.1. Description of the used cross sections and the load 

The results have been compared and shown as the ratio between peak pressure and 

equivalent static load for the section. Input data is shown in Table H.1. 

Table H.1.  Investigated cross sections and loads. 

h [mm] As [mm
2
] qeq [kN/m

2
] Pc [kPa] Pc/qeq 

400 1571 539 1250 2.32 

300 1178 384 1250 3.26 

200 785 228 1250 5.48 

400 1571 539 5000 9.27 

300 1178 384 5000 13.02 

200 785 228 5000 21.93 

 

Firstly, the envelops and their relative error  when not considering damping is shown 

for the different ratios. The envelops are taken for one oscillation. The value of the 

support reaction obtained by using Fortifikationsverket’s approach is also shown next 

to the diagrams. 
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H.1. Undamped case 

Ratio Figure Relative error 
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Ratio Figure   
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Cross-section Load case 1  
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H.2  Damped case 

 

A real structure always has some damping but this is not considered in the thesis since 

it should not affect the initial result considerably. Since the moment and shear force 

are much higher than expected in the linear elastic case, a check has been performed 

to see if the peaks are significantly affected by damping. The damping that has been 

used is 5 % Rayleigh damping. 

Rayleigh damping is defined with two factors  and . These relate the damping ratio 

to every mode.  tends to damp lower modes and  tends to damp higher modes. The 

damping ratio for mode i can according to Craig Jr. and Kurdila (2006) be written as  

    (H-1) 

where i is the damping ratio for mode i. Damping is introduced with a damping 

matrix, which depends on the mass and stiffness matrices 

    (H-2) 

In explosion design many frequency modes are of interest; for instance, the rigid body 

motion can only be described by using many modes. It is of interest to see how much 

the peaks in support reactions and moments are influenced by using a damping ratio 

of 5 %. Rayleigh damping is constructed so that it will have a lower value between the 

two specified values and higher value for higher or lower modes.  

An example of how the - and -factors for the normal cross-section with subjected 

to load case 1 is shown below.  

The period of the oscillations is rather regular and hence the mode frequency can be 

calculated. It is estimated that 5 peaks occur during approximately 20 ms for load case 

1. This would give a natural period of  

    (H-3) 

And a corresponding natural frequency of 

    (H-4) 

The damping ratio for this mode can be set to 5% but in order to not overdamp this 

mode a factor of 1.5 has been applied to the frequency. 

    (H-5) 

All modes below this frequency are of interest and the fundamental mode of vibration 

can be written as  
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    (H-6) 

The damping ratio is also set to 5 % for this mode. By using eq. (2-46) with mode 

frequencies from (H-4) and (H-6) the input parameters for ADINA can be found as.   

    (H-7) 

 

Figure H.2.  Typical Rayleigh damping used for the cross-sections. 
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Ratio Figure Relative error 
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Ratio Figure   
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Ratio Figure Relative error 
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APPENDIX I Detailed Analysis 

I.1 Orientation 

The choice of material model influences the result considerably as seen in previous 

Chapters 4 to 6. The choice of Young’s modulus affects the wave speed, which in turn 

changes the deformation shape. It has also been shown that the magnitude of the 

support reaction depends on the initial stiffness, which may be the uncracked 

stiffness. The deformation shape then affects the simplified models significantly and 

thereby the result. The non-linearity of a reinforced concrete beam is above modelled 

by a simplified plastic bi-linear relationship.  

In order to obtain better accuracy of the solutions the model could be refined. For this 

purpose a 2D-solid finite element model is going to be used, explicitly modelling 

concrete cracking and reinforcement yielding. Furthermore, the crack pattern will be 

investigated and perhaps intentions of a direct shear crack can be detected. 

The previously used reinforced concrete beam will be further examined and compared 

to the solution in previous chapter and differences will be discussed.  

Due to this thesis time limitation, the detailed analysis was never completed. The 

model assuming bond slip between concrete and reinforcement bars was created but 

provided strange results. Therefore, results will only be shown for the full bond model 

in order to give a brief discussion of encountered problems and results.  

 

I.2 Modelling technique 

I.2.1 Introduction 

There is a possibility to use a concrete model in ADINA in which non-linearity of the 

concrete is taken into account. This is of interest because the beam is going to be 

modelled as detailed as possible. It requires much more information than a linear 

elastic material model. Therefore, it is not often used unless the problem requires 

great accuracy. However, it provides the designer with crack patterns, and possibility 

of reinforcement yielding, making it a more complicated model.  The modelling 

technique follows the procedure in Johansson and Lantz (2009), which considers 

restraint cracking of concrete edge beams, and will be described below. Their way of 

modelling can be used with some modifications for this problem. 

 

I.2.2 Geometry 

The beam that is going to be analysed has the same dimensions as the example carried 

out in Chapter 3, see Figure I.1. It will be modelled with a symmetric boundary 

condition, only allowed to deform in vertical direction without rotations, in the centre 

since the two sides are symmetric. The support at the edges is difficult to model 

appropriately to get convergence. Therefore, an elastic material has been used closest 

to the support, indicated with a shaded area in Figure I.1. The beam is simply 

supported, which means that only the vertical movement is prevented. This will not 

influence the result significantly and it avoids concrete crushing locally.  
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L=1.5 
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Figure I.1.  The model of the simply supported reinforced concrete beam. 

 

The concrete in the beam will be modelled with four node 2D-solid plain stress 

elements, quadratic with side lengths 50 mm. The numbers of elements cannot be 

increased in the vertical direction due to node limitations of 900 nodes. Since it is of 

interest to investigate a direct shear crack close to the support, the mesh has been 

refined to 10 mm in longitudinal direction while keeping the length in the vertical 

direction 50 mm. 

The steel reinforcement is modelled with two node truss elements with the same 

length as the concrete elements. They are modelled on the actual level of the 

reinforcement in the top and bottom with distributed areas. The connection between 

the steel reinforcement and the concrete is made with either full bond, where the 

reinforcement bars and concrete share a node or with non-linear springs, described in 

Section I.2.5. 

 

I.2.2 Loading and solution method 

The beam will be subjected to the archive bomb, load case 1, see Section 3.2. 

The analysis will be performed with an implicit method since the explicit method has 

given strange solutions in Chapter 3. The explicit method would otherwise be 

preferred for this type of problem since it would reduce the calculation effort. The 

composite bathe method for implicit integration is used since ADINA (2010) 

recommends it. The time step must be set to a very small value in order to get 

convergence. Convergence was found for a time step of 1 ms. 
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I.2.3 Concrete 

Concrete is weak in tension and strong in compression. This can be shown with the 

uniaxial stress-strain relationship in Figure I.2.  

 

 

 

c 

c 

fct 

fcc 

ct ctu cu cc 

 

Figure I.2. Uniaxial stress-strain relationship for concrete 

Some different parameters must be input in ADINA in order to describe the material 

response. The values of strengths, ultimate strengths and the corresponding strains can 

be input as they are but the ultimate tensile strain in concrete is a function of fracture 

energy Gf, Young’s modulus Ec, concrete tensile strength fct, a length. The relationship 

can be described as 

ctctu    (9-1) 

Where is the input variable in ADINA defined as 
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The length for perfectly bonded reinforcement bars is described with the average 

crack distance, sm , Johansson (2000). This can be found from Eurocode 2. 
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where, h is the height of the cross-section, d is the effective depth, xu is the height of 

the compression zone in the ultimate limit state, b is the width, As and A’s are the area 

of the top and bottom reinforcement respectively, db is the bar diameter and  c is the 

concrete cover. The factors k are 

      valuedrecommende  425.0

      valuedrecommende      4.3

                  bendingfor       5.0

conditions bond goodfor       8.0

4

3

2

1









k

k

k

k

 (9-8) 

Inserting values will eventually give the mean crack distance of  

mm 154ms  (9-9) 

This will give the input value for ADINA as 
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(9-10) 

If the bond is described with a stress-slip relationship the length should be taken as the 

element length, Johansson (2000). The element length should be taken as the element 

length perpendicular to the crack propagation see Figure I.3. 
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l=lel,1 

l=lel,2 

 

Figure I.3.  Definition of the element length for different crack directions through an 

element. 

The cracks will propagate mainly vertically and therefore the element length that 

should be used is the longitudinal length. This requires different element lengths for 

the  value model since the mesh is refined closer to the supports.  
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The compressive ultimate stress cu can be described as 

  cccu f
k

k






21

2




  (9-13) 
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05.1

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 (9-15) 

cu is the ultimate strain and c1 is the strain at maximum stress Engström (continuous 

beams). According to Eurocode 2, CEN (2004)  

‰5.3      and‰0.21  cuc   (9-16) 

which gives 

MPa8.16cu  (9-17) 

The input variables in ADINA are shown in Table I.1. 

Table I.1. Input variables for the concrete material model in ADINA. 

fc - 20 MPa  39.24 

fcu - 16.8 MPa Gf 80 Nm/m
2 

fct 2.9 MPa c1 - 2.0 ‰ 

Ec 33 GPa cu - 3.5 ‰ 

 4.1  2400 kg/m
3 

 7.98  0.2 

 

I.2.4 Reinforcement 

The steel reinforcement has a simpler stress strain relationship and it can be explained 

by a bilinear material model similar to the idealised elasto-plastic model used in 

Chapter 4. It is explained by Table I.2. The steel reinforcement is modelled with a 

small strain hardening in order to avoid convergence problems in the FE-analysis. 
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Table I.2. Input variables for the steel reinforcement material model in ADINA. 

fyd 435 MPa 

E 200 GPa 

E’ 0.2 GPa 

u 10 % 

 7800 kg/m
3 

 0.3 

 

I.2.5 Bond between reinforcement and concrete 

Bond between steel reinforcement and concrete depends on mechanical interlocking 

and friction. It can be explained by bond stress-slip relationship according to 

Figure I.4. The bond can either fail by pull-out of the reinforcement bars or transverse 

splitting of the concrete. This relationship does only consider pull out of the 

reinforcement. 

 

 

 

 

b 

s 

s1 
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s2 s3 

0.4max 

 

Figure I.4. Bond stress-slip relationship for concrete and steel reinforcement bars. 

The initial bond stress before the maximum stress is reached can according to CEB-

FIP (1993) be expressed as 
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b   (9-18) 

The input parameters are described in Table I.3 for good bond conditions, CEB-FIP 

(1993) 

Table I.3. Data for bond stress between reinforcement and concrete 

max 7.135.2 ckf MPa 

s1 1.0 mm 

s2 3.0 mm 

s3 Clear rib spacing = 7.0 mm 
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In a simplified model, full bond between the reinforcement and the concrete can be 

assumed. This is achieved in ADINA by making sure that the nodes of the 

reinforcement bars and the concrete nodes coincide.  

However, in a more detailed model, the bond between steel reinforcement and 

concrete needs to be modelled in ADINA with non-linear springs. To model this, the 

reinforcement nodes are placed 2 mm displaced in the horizontal direction from the 

concrete nodes they are bonded with, see Figure I.5. The reinforcement nodes are then 

fixed in the vertical direction relative to the concrete nodes and are therefore forced to 

have the same displacement in this direction. In the horizontal the reinforcement is 

connected to the concrete nodes with the non-linear springs to simulate the bond-slip 

relation. The relationship described in Figure I.4. with data from Table I.3. was used 

for the non-linear springs. The springs require a force and therefore the stress must be 

multiplied with the total surface area i.e. 

elbsurfbb lnAF    (9-19) 

In the end nodes only half of the force will be used since the length is only half the 

length. 
 

Concrete node 

Reinforcement node 

2 mm 

 

Figure I.5. The non-linear springs connects the reinforcement to the concrete with a 

bond stress-slip relationship. The springs are actually placed horizontal 

to the reinforcement node but are shown above for clarity. 

 

I.2.6 Verification 

For verification of the 2D-solid element model in ADINA, the displacement results 

from elastic beam elements have been used. 2D-solids provide a similar initial 

deformation shape and size for a state II beam modelled with equivalent Young’s 

modulus. The wave is propagating somewhat differently and it is probably due to this 

fact that the solutions diverge slightly, see Figure I.6. The wave propagation is 

different for a shear wave, see Section 3.5.4. The correct wave form is hard to 

determine since ADINA must use the critical time step in order to model the wave 

propagation correctly. This time step has not been used in the comparisons made here 

since it is hard to determine for a shear wave. The midpoint displacement is almost 

the same although a slight divergence in the structures Eigen period is present in 

Figure I.7. 
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Figure I.6. Initial deformation between 2D-solid elements and beam elements 

 

Figure I.7. Midpoint displacement for the two element types. 

The material model must also be verified in order to use it for dynamic analyses. 

Verification is only done for the full bond model, which is the only model that 

dynamic results are presented for. A study of a single element is performed and gave 

the input values back. Another verification follows and is performed with an 

incremented static load until failure. The moment capacity is calculated in Section 3.3 

to be  

kNm227RdM  (9-20) 

Cracks will occur when the stress in the lower fibre is greater than the concrete tensile 

stress. If the influence of reinforcement is neglected it can be calculated as 
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The moment My that causes the reinforcement to yield is calculated with a state II 

model with steel strain equal to the yield strain. The concrete is assumed to remain 

elastic and the concrete stress can therefore be calculated. From force equilibrium 

xd

xbxE
Af sc

cc
syd


 


with      

2
:  (9-22) 

assuming no normal force is present, the height of compression zone can be calculated 

as 

mm2.742
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(9-23) 

And the moment My can be determined as 
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(9-24) 

The moment in mid span is plotted against the corresponding curvature Figure I.8. 

The presented theoretical values are also shown here for comparison. The moment has 

been calculated by using the stress distribution in the concrete and the stress 

reinforcement. The curvature is taken as the strain, , in the outermost fibre divided by 

the height of the compressed zone, x. This assumes a linear distribution of strain. 

 
A

dAzM 
 

(9-25) 

x




r

1

 

(9-26) 

These have reasonable accuracy. The crack initiation is more obvious when 

investigating the appearance of cracks in the result window and starts at M = 88 kNm. 

Yield occurs in the reinforcement at M = 217 kNm. This is also reasonable. The 

ultimate capacity is higher than expected. A small steel hardening has been 

introduced, and can be one of the reasons. Another reason is that it seems like the 

beam has too high fracture energy.  
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Figure I.8. Moment-curvature relationship for section in mid span of the reinforced 

concrete model subjected to a static load. The crack patterns for the 

times denoted with numbers are shown in Figure I.9. 

The crack pattern for the beam statically loaded until failure is shown in Figure I.9. 

The crack patterns are shown for the times shown in Figure I.8 above. It can be seen 

that cracks form close to the support, which is modelled with an elastic material, for a 

very low load. This is not expected. Cracking starts in the centre. It can be seen that 

the cracks have a small distance between them. The distance is larger for fully 

developed cracks. 
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Figure I.9 Crack pattern for a statically loaded reinforced concrete beam. a) open 

cracks, b) fully developed cracks. 
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I.3 Results 

Due to this project’s time limitation the results of the detailed analysis is not complete 

and needs to be further investigated in future studies. Nevertheless, they are 

incorporated in this thesis in order to provide some guidelines and observations made 

using the concrete model available in ADINA. Several problems were encountered 

when loading the reinforced concrete beam with a very high impulsive load. The load 

cases used when examining the behaviour of an idealised reinforced concrete beam 

using beam elements in Chapters 3 and 4 were too impulsive and caused early failure. 

The failure occurred close to the support and depended on the layout of the elastic 

area. Convergence was not achieved when the whole structure was modelled with the 

concrete model.  

The failure close to the support is not believed to be a direct shear crack due to 

problems modelling the support. Several support models were tried out, Figure I.10:  

a). Support in mid plane, with and without elastic materials. 

b). Modelling of an extended support with boundary condition further away. 

c and d). Increasing size of elastic area, both vertically and horizontally. 
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Figure I.10. Different support layouts give different results.  

Schematic pictures of the failures at the supports are shown in Figure I.11. 
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Figure I.11. Schematic picture of how cracks developed close to the support or the 

elastic zone. 

For a smaller impulse intensity, i = 1000 Pa•s, see Figure I.12, failure close to the 

supports is not initially obtained and the concrete beam get a behaviour closer to the 

expected. Since no expected behaviour was found for the model with perfect bond or 

the model assuming a bond slip relationship for highly impulsive loads, results for the 

less intense load will only be shown for perfectly bonded reinforcement.  

 

 

 

Pressure, P 

Time, t 

Ppeak=1785 kPa 

tt=1.12 ms 

 

Figure I.12. The load used for the detailed reinforced concrete model. 

When the response of the detailed analysis is compared against the corresponding 

SDOF system and a FE-analysis with elasto-plastic beam elements the real concrete 

behaviour gives a smaller displacement, see Figure I.13. A slight divergence is 

expected since the simplified model uses an equivalent stiffness, compare Figure 3.3. 

The displacement for the SDOF model is solved with load-mass transformation factor 

0.667 which gives a slightly different period but a reasonable description of the 

maximum value as seen in Section 4.1.3.  
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Figure I.13. Midpoint displacement for impulse loading according to Figure I.12. 

The initial displacement shape, shown in Figure I.14, is similar to what has been seen 

for the elasto-plastic case. It is shown with symmetry across mid span. The wave form 

can be identified after 0.5 ms but disappears and the deformed shape of the beam will 

be more similar to an elastic bending shape. There is also a tendency to a rigid body 

motion in the beginning. The displacement at the support is non-zero since the chosen 

line is the centre line and will consequently be compressed. 

  

Figure I.14. Displacement shape for the concrete model for impulse loading 

according to Figure I.12. 

The reinforcement will just yield before the structure will oscillate back. It fails close 

to the support when the structure oscillates back, which supports the hypothesis that 

there is modelling issues close to the support and that the crack is not a direct shear 

crack when the structure is subjected to a higher load. 

The crack pattern for the statically loaded reinforced concrete beam is shown in 

Figure I.15 for different times. This figure shows all cracks to the left and fully 

developed cracks to the right. Cracks occur at the boundary between the elastic area 
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and concrete area, which is not expected. The only interesting about crack pattern is 

the order they occur. Bending cracks form closer to the support before in the centre. 

This is a consequence of the rigid body motion. It can also be seen that reasonable 

distance between the cracks is obtained although some small cracks occur between the 

reinforcement and the bottom edge between the main cracks. No fully developed 

cracks have formed in the centre part until 1 ms. It can also be seen that the cracks 

close when the beam oscillates back. 
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Figure I.15. Crack pattern for a) open cracks and b) fully developed cracks for 

different times for impulse loading according to Figure I.12. 

As mentioned in the introduction of the result section, more studies need to be done in 

this subject. The result from this investigation can be taken into account and evaluated 

further. Especially, the problem modelling the support must be solved in order to get a 

better behaviour of the beam with real reinforced concrete behaviour. 

 


